Create two models for the relationship between height and weight based on gender Modify the code in Assignment 1 to ask for a person's gender as well as their height to produce an estimate of a person's weight using the models you created Find the weights and use those in your function (i.e. don't generate a model each time)
In [3]:
    
import pandas as pd
import statsmodels.formula.api as smf
    
In [4]:
    
df = pd.read_csv("heights_weights_genders.csv")
    
In [5]:
    
df
    
    Out[5]:
In [6]:
    
df.head()
    
    Out[6]:
In [7]:
    
lm = smf.ols(formula="Weight ~ Height + Gender",data=df).fit()
    
In [9]:
    
lm.params
    
    Out[9]:
In [11]:
    
height_input = input("What is your height in inches?")
    
    
In [15]:
    
gender_input = input('Male or Famale')
    
    
In [16]:
    
def weight_estimation(individual_height, individual_gender): 
    Intercept= -244.923503
    Male= 19.377711 
    Slope= 5.976941
    if individual_gender == 'Male':
        return (Intercept + Male + (Slope * float(individual_height)))
    else:
        return (Intercept + (Slope * float(individual_height)))
    
In [17]:
    
weight_estimation(73.847017, 'Male')
    
    Out[17]:
In [19]:
    
weight_estimation(73.847017, 'Female')
    
    Out[19]:
In [ ]: