In [1]:
    
import pandas as pd
%matplotlib inline
import matplotlib.pyplot as plt
import statsmodels.formula.api as smf
    
In [2]:
    
df=pd.read_csv('heights_weights_genders.csv')
    
In [3]:
    
df_male=df[df['Gender']=='Male']
df_female=df[df['Gender']=='Female']
    
In [4]:
    
df_female.head()
    
    Out[4]:
In [5]:
    
lm1 = smf.ols(formula="Weight~Height",data=df_male).fit()
    
In [9]:
    
intercept_male, slope_male = lm1.params
    
In [7]:
    
lm2 = smf.ols(formula="Weight~Height",data=df_female).fit()
    
In [10]:
    
intercept_female, slope_female = lm2.params
    
In [28]:
    
def predict_weight_gender(): 
    input_gender=input("What's your gender?").upper()
    input_height=int(input("What's your height?"))
    if input_gender == 'MALE': 
        return (slope_male*input_height) + intercept_male
    elif input_gender == 'FEMALE': 
        return (slope_female*input_height) + intercept_female
    else: 
        print('Invalid inputs')
    
In [29]:
    
predict_weight_gender()
    
    
    Out[29]: