In [1]:
import sparse_dmd as sd
In [2]:
import numpy as np
In [3]:
speech = np.loadtxt('benchmark_signals/speech.txt')
In [4]:
snapshots = sd.to_snaps(speech)
dmd = sd.DMD(snapshots)
dmd.compute()
In [5]:
dmd.modes
Out[5]:
In [6]:
dmd.amplitudes
Out[6]:
In [7]:
tremor = np.loadtxt('benchmark_signals/tremor.txt')
In [8]:
snap_t = sd.to_snaps(tremor)
dmd_t = sd.DMD(snap_t)
# This bit fails for this dataset
#dmd_t.compute()
In [9]:
dmd_t
Out[9]:
In [10]:
synthetic = np.loadtxt('benchmark_signals/synthetic.txt')
In [11]:
snap_s = sd.to_snaps(synthetic)
dmd_s = sd.DMD(snap_s)
In [12]:
dmd_s.compute()
In [13]:
dmd_s.modes
Out[13]:
In [14]:
dmd_s.amplitudes
Out[14]:
OK, just realizing that this algo is really for 2D timeseries — so should work on a seismic volume I think. Will try next...
In [ ]: