DMD

Dynamic mode decomposition.


In [1]:
import sparse_dmd as sd

In [2]:
import numpy as np

Speech


In [3]:
speech = np.loadtxt('benchmark_signals/speech.txt')

In [4]:
snapshots = sd.to_snaps(speech)
dmd = sd.DMD(snapshots)
dmd.compute()

In [5]:
dmd.modes


Out[5]:
array([[ 1.]])

In [6]:
dmd.amplitudes


Out[6]:
array([-74.2772366+0.j])

Tremor


In [7]:
tremor = np.loadtxt('benchmark_signals/tremor.txt')

In [8]:
snap_t = sd.to_snaps(tremor)
dmd_t = sd.DMD(snap_t)

# This bit fails for this dataset
#dmd_t.compute()

In [9]:
dmd_t


Out[9]:
<sparse_dmd.sparse_dmd.DMD at 0x11191af10>

Synthetic


In [10]:
synthetic = np.loadtxt('benchmark_signals/synthetic.txt')

In [11]:
snap_s = sd.to_snaps(synthetic)
dmd_s = sd.DMD(snap_s)

In [12]:
dmd_s.compute()

In [13]:
dmd_s.modes


Out[13]:
array([[-1.]])

In [14]:
dmd_s.amplitudes


Out[14]:
array([-0.74198576+0.j])

OK, just realizing that this algo is really for 2D timeseries — so should work on a seismic volume I think. Will try next...


In [ ]: