recursive quicksort

sort an array by choosing a point in the array, called the pivot point, then creating two smaller arrays: Keep in mind an array of size one is already sorted, so no need to sort that.

  • choose a point, called the pivot point
  • make an array containing everything smaller or equal to the pivot
  • second array containing everything bigger than the pivot
  • so the answer is just quicksort(smaller_array) + pivot + quicksort(bigger_array)

first to generate some random data:


In [10]:
import random
import numpy as np
random_data = [random.randint(0,100) for i in range(10)]
random_data[:10]


Out[10]:
[91, 18, 30, 16, 41, 69, 44, 95, 34, 30]

In [11]:
def quicksort(data):
    if len(data) < 2:
        return data
    else:   
        pivot = data[0]
        less = [i for i in data[1:] if i <= pivot]
        more = [i for i in data[1:] if i > pivot]
        return quicksort(less) + [pivot] + quicksort(more)

quicksort(random_data)


Out[11]:
[16, 18, 30, 30, 34, 41, 44, 69, 91, 95]

using a random pivot

Quicksort works faster when using a random pivot


In [12]:
def quicksort2(data):
    import random
    if len(data) < 2:
        return data
    else:
        p_idx = random.randrange(0,len(data)-1)
        pivot = data[p_idx]
        
        less = [i for i in data[:p_idx] if i <= pivot] + [i for i in data[p_idx+1:] if i <= pivot]
        more = [i for i in data[:p_idx] if i > pivot] + [i for i in data[p_idx+1:] if i > pivot]
        return quicksort2(less) + [pivot] + quicksort2(more)

quicksort2(random_data)


Out[12]:
[16, 18, 30, 30, 34, 41, 44, 69, 91, 95]

some tests to make sure the algos are working correctly


In [24]:
assert len(random_data) == len(quicksort(random_data))
assert quicksort(random_data) == quicksort2(random_data) == sorted(random_data)

a = [i for i in range(10)]
random.shuffle(a)
assert [i for i in range(10)] == quicksort(a) == quicksort2(a)

In [14]:
%timeit(quicksort(random_data))


13.3 µs ± 834 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

In [15]:
%timeit(quicksort2(random_data))


38.9 µs ± 1.67 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)

visualizing quicksort

there are many better visuals on the web, heres my stab:

I modified the quicksort function above so it only does one sort step and returns the list:


In [25]:
%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns
from IPython import display

In [26]:
def quicksort_onestep(data):
    import random
    if len(data) < 2:
        return data
    else:
        p_idx = random.randrange(0,len(data)-1)
        pivot = data[p_idx]
        
        less = [i for i in data[:p_idx] if i <= pivot] + [i for i in data[p_idx+1:] if i <= pivot]
        more = [i for i in data[:p_idx] if i > pivot] + [i for i in data[p_idx+1:] if i > pivot]
        return less + [pivot] + more

quicksort_onestep(random_data)


Out[26]:
[18, 30, 16, 34, 30, 41, 91, 69, 44, 95]

Here I add the list after each sort step to an array qs_steps.


In [28]:
def compare_lists(a, b):
    "returns True if two lists contain the same element at each index, false otherwise"
    assert len(a) == len(b)
    for pair in zip(a, b):
        if pair[0] != pair[1]:
            return False
    return True

random_data = [random.randint(0,100) for i in range(100)]
sorted_data = quicksort2(random_data)
plt.plot(random_data, label="initial data", lw=1.5, ls="dashed")

qs_steps = []

# first quicksort step
d = quicksort_onestep(random_data)
qs_steps.append(d)
plt.plot(d, alpha=0.5, lw=0.8, label="first pass")

#rest of quicksort steps
q_pass = 1
while not (compare_lists(sorted_data, d)):
    q_pass += 1
    d = quicksort_onestep(d)
    qs_steps.append(d)
    if compare_lists(d, sorted_data):
        plt.plot(sorted_data, c="r", ls="dashed", lw=2.5, label="sorted", alpha = 0.9)
    else:
        plt.plot(d, alpha=0.7, lw=0.8)

print(f"it took {len(qs_steps)} steps to sort {len(random_data)} items")
# make plot bigger
plt.legend();


it took 235 steps to sort 100 items

use animations to visualize quicksort

qs_steps is a array containing each step in the quicksort algorithim.

Using matplotlib.animation to animate this.

Github doesn't render videos for some reason, so see this notebook at nbviewer for the pretty animations.


In [29]:
# to display animations inline
%matplotlib nbagg  
import matplotlib.animation as animation
from IPython import display

In [35]:
# the data
x = [i for i in range(len(qs_steps[0]))]
y = qs_steps

# the figure
fig, ax = plt.subplots()
fig.set_size_inches(8,6)
ax.set_title("Quick Sort steps")
ax.set_xlabel('X')
ax.set_ylabel('Y')

# this displays the data to be sorted as a scatter plot
original_line = ax.scatter(x,y[0], alpha = 0.2, label = "original data")
# the final sorted line.
sorted_line = ax.plot(x,y[-1], lw=2, alpha = 0.7, label="sorted")

# this displays the data being sorted in a scatter plot
scatterplot = ax.scatter(x,y[0], label="sorting")

def animate(i):
    scatterplot.set_offsets(np.c_[x,y[i]])

ani = animation.FuncAnimation(fig, animate, 
                frames=len(y), interval=150, repeat=False) 

print(f"it took {len(qs_steps)-1} steps to sort {len(qs_steps[0])} items")
plt.legend()
#ani.save("quicksort_animate.mp4")
plt.show();


it took 234 steps to sort 100 items

In [36]:
display.HTML("<video controls autoplay src='quicksort_animate.mp4'></video>")


Out[36]:

Another animation, this time using lines instead of a scatter plot.


In [38]:
x = [i for i in range(len(qs_steps[0]))]
y = qs_steps

fig1, ax1 = plt.subplots()

# why the heck does line need a comma after it?
line, = ax1.plot(x,y[0], lw=3, alpha=0.8, label="sorting")
line2, = ax1.plot(x,y[0], lw=2, alpha = 0.1, label = "one step before")
line3 = ax1.plot(x,y[0], lw=0.8, alpha = 0.4, label = "original data")
line3 = ax1.plot(x,y[-1], lw=1, alpha = 0.6, label="sorted")

fig1.set_size_inches(8,6)
ax1.set_title("Quick Sort steps")
ax1.set_xlabel('X')
ax1.set_ylabel('Y')

def animate(i):
    line.set_ydata(y[i])  # update the data
    if i > 1:
        line2.set_ydata(y[i-1])

ani2 = animation.FuncAnimation(fig1, animate, 
                frames=len(y), interval=120, repeat=False) 

print(f"it took {len(qs_steps)-1} steps to sort {len(qs_steps[0])} items")
plt.legend()
#ani2.save("quicksort_animate1.mp4")
plt.show();


it took 234 steps to sort 100 items

In [39]:
display.HTML("<video controls autoplay><source src='quicksort_animate1.mp4' type='video/mp4'></video>")


Out[39]:

In [ ]: