In [1]:
import pandas as pd
In [2]:
%run src/ssy_monte_carlo_test.py
In [3]:
s = SSY()
In [4]:
ssy_compute_stat = ssy_function_factory(s, parallelization_flag=True)
In [29]:
ssy_compute_stat()
Out[29]:
In [31]:
ssy_compute_stat()
Out[31]:
In [32]:
num_reps = 1000
In [36]:
vals = np.empty(num_reps)
for i in range(num_reps):
vals[i] = ssy_compute_stat(n=500, m=5000)
v = pd.Series(vals)
v.describe()
Out[36]:
In [37]:
vals = np.empty(num_reps)
for i in range(num_reps):
vals[i] = ssy_compute_stat(n=1000, m=5000)
v = pd.Series(vals)
v.describe()
Out[37]:
In [38]:
vals = np.empty(num_reps)
for i in range(num_reps):
vals[i] = ssy_compute_stat(n=1500, m=5000)
v = pd.Series(vals)
v.describe()
Out[38]:
In [ ]:
vals = np.empty(num_reps)
for i in range(num_reps):
vals[i] = ssy_compute_stat(n=2000, m=10000)
v = pd.Series(vals)
v.describe()
In [13]:
vals = np.empty(num_reps)
for i in range(num_reps):
vals[i] = ssy_compute_stat(n=2500, m=1000)
v = pd.Series(vals)
v.describe()
Out[13]:
In [14]:
vals = np.empty(num_reps)
for i in range(num_reps):
vals[i] = ssy_compute_stat(n=3000, m=1000)
v = pd.Series(vals)
v.describe()
Out[14]:
In [ ]:
In [20]:
vals = np.empty(num_reps)
for i in range(num_reps):
vals[i] = ssy_compute_stat(n=1000, m=500)
v = pd.Series(vals)
v.describe()
Out[20]:
In [21]:
vals = np.empty(num_reps)
for i in range(num_reps):
vals[i] = ssy_compute_stat(n=1000, m=1000)
v = pd.Series(vals)
v.describe()
Out[21]:
In [22]:
vals = np.empty(num_reps)
for i in range(num_reps):
vals[i] = ssy_compute_stat(n=1000, m=2000)
v = pd.Series(vals)
v.describe()
Out[22]:
In [23]:
vals = np.empty(num_reps)
for i in range(num_reps):
vals[i] = ssy_compute_stat(n=2000, m=2000)
v = pd.Series(vals)
v.describe()
Out[23]:
In [24]:
vals = np.empty(num_reps)
for i in range(num_reps):
vals[i] = ssy_compute_stat(n=1500, m=2000)
v = pd.Series(vals)
v.describe()
Out[24]:
In [ ]: