In [1]:
import matplotlib.pyplot as plt
import pandas as pd
In [2]:
%run src/by_monte_carlo_test.py
In [3]:
b = BY()
In [4]:
by_compute_stat = by_function_factory(b, parallelization_flag=True)
In [5]:
by_compute_stat()
Out[5]:
In [6]:
by_compute_stat()
Out[6]:
In [15]:
num_reps = 1000
In [16]:
vals = np.empty(num_reps)
for i in range(num_reps):
vals[i] = by_compute_stat(n=500, m=1000)
v = pd.Series(vals)
v.describe()
Out[16]:
In [17]:
vals = np.empty(num_reps)
for i in range(num_reps):
vals[i] = by_compute_stat(n=1000, m=1000)
v = pd.Series(vals)
v.describe()
Out[17]:
In [18]:
vals = np.empty(num_reps)
for i in range(num_reps):
vals[i] = by_compute_stat(n=1500, m=1000)
v = pd.Series(vals)
v.describe()
Out[18]:
In [19]:
vals = np.empty(num_reps)
for i in range(num_reps):
vals[i] = by_compute_stat(n=2000, m=1000)
v = pd.Series(vals)
v.describe()
Out[19]:
In [20]:
vals = np.empty(num_reps)
for i in range(num_reps):
vals[i] = by_compute_stat(n=2500, m=1000)
v = pd.Series(vals)
v.describe()
Out[20]:
In [ ]:
In [21]:
vals = np.empty(num_reps)
for i in range(num_reps):
vals[i] = by_compute_stat(n=1000, m=500)
v = pd.Series(vals)
v.describe()
Out[21]:
In [22]:
vals = np.empty(num_reps)
for i in range(num_reps):
vals[i] = by_compute_stat(n=1000, m=1000)
v = pd.Series(vals)
v.describe()
Out[22]:
In [23]:
vals = np.empty(num_reps)
for i in range(num_reps):
vals[i] = by_compute_stat(n=1000, m=2000)
v = pd.Series(vals)
v.describe()
Out[23]:
In [24]:
vals = np.empty(num_reps)
for i in range(num_reps):
vals[i] = by_compute_stat(n=2000, m=2000)
v = pd.Series(vals)
v.describe()
Out[24]:
In [ ]: