203: Exampville Destination Choice

Welcome to Exampville, the best simulated town in this here part of the internet!

Exampville is a demonstration provided with Larch that walks through some of the data and tools that a transportation planner might use when building a travel model.


In [1]:
import larch, numpy, pandas, os
from larch import P, X

In [2]:
larch.__version__


Out[2]:
'5.4.0'

In this example notebook, we will walk through the estimation of a tour destination choice model. First, let's load the data files from our example.


In [3]:
hh, pp, tour, skims, emp = larch.example(200, ['hh', 'pp', 'tour', 'skims', 'emp'])

For this destination choice model, we'll want to use the mode choice logsums we calculated previously from the mode choice estimation, but we'll use these values as fixed input data instead of a modeled value.
We can load these logsums from the file in which they were saved. For this example, we can indentify that file using the larch.example function, which will automatically rebuild the file if it doesn't exists. In typical applications, a user would generally just give the filename as a string and ensure manually that the file exists before loading it.


In [4]:
logsums_file = larch.example(202, output_file='/tmp/logsums.pkl.gz')
logsums = pandas.read_pickle(logsums_file)

Preprocessing

We'll replicate the pre-processing used in the mode choice estimation, to merge the household and person characteristics into the tours data, add the index values for the home TAZ's, filter to include only work tours, and merge with the level of service skims. (If this pre-processing was computationally expensive, it would probably have been better to save the results to disk and reload them as needed, but for this model these commands will run almost instantaneously.)


In [5]:
raw = tour.merge(hh, on='HHID').merge(pp, on=('HHID', 'PERSONID'))
raw["HOMETAZi"] = raw["HOMETAZ"] - 1
raw["DTAZi"] = raw["DTAZ"] - 1
raw = raw[raw.TOURPURP == 1]
raw.index.name = 'CASE_ID'

The alternatives in the destinations model are much more regular than in the mode choice model, as every observation will have a similar set of alternatives and the utility function for each of those alternatives will share a common functional form. We'll leverage this by using idca format to make data management simpler.

First, we'll assemble some individual variables that we'll want to use. We can build an array to represent the distance to each destination based on the "AUTO_DIST" matrix in the skims OMX file.


In [6]:
distance = pandas.DataFrame(
    data=skims.AUTO_DIST[:][raw["HOMETAZi"], :],
    index=raw.index,
    columns=skims.TAZ_ID,
)

This command pulls the relevant row, identified by the "HOMETAZi" column in the raw data, into each row of a new DataFrame, which has a row for each case and a column for each alterative.

Note that the [:] inserted into the data argument is used to instruct the pytables module to load the entire matrix into memory, and then numpy indexing is used to actually select out the rows needed. This is a technical limitation of the pytables module and could theoretically be a very computationally expensive step if the skims matrix is huge relative to the number of rows in the raw DataFrame. However, in practice a single matrix from the skims file is generally not that large compared to the number of observations, and this step can be processed quite efficiently.

The logsums we previously loaded is in the same format as the distance, with a row for each case and a column for each alterative. To use the idca format, we'll reshape these data, so each is a single column (i.e., a pandas.Series), with a two-level MultiIndex giving case and alternative respectively, and then assemble these columns into a single DataFrame. We can do the reshaping using the stack method, and we will make sure the resulting Series has an appropriate name using rename, before we combine them together using pandas.concat:


In [7]:
ca = pandas.concat([
    distance.stack().rename("distance"),
    logsums.stack().rename("logsum"), 
], axis=1)

In [8]:
ca.info()


<class 'pandas.core.frame.DataFrame'>
MultiIndex: 302560 entries, (0, 1) to (20736, 40)
Data columns (total 2 columns):
 #   Column    Non-Null Count   Dtype  
---  ------    --------------   -----  
 0   distance  302560 non-null  float64
 1   logsum    302560 non-null  float64
dtypes: float64(2)
memory usage: 5.5 MB

For our destination choice model, we'll also want to use employment data. This data, as included in our example, has unique values only by alternative and not by caseid, so there are only 40 unique rows. (This kind of structure is common for destination choice models.)


In [9]:
emp.info()


<class 'pandas.core.frame.DataFrame'>
Int64Index: 40 entries, 1 to 40
Data columns (total 3 columns):
 #   Column         Non-Null Count  Dtype
---  ------         --------------  -----
 0   NONRETAIL_EMP  40 non-null     int64
 1   RETAIL_EMP     40 non-null     int64
 2   TOTAL_EMP      40 non-null     int64
dtypes: int64(3)
memory usage: 1.2 KB

To make this work with the computational arrays required for Larch, we'll need to join this to the other idca data. Doing so is simple, because the index of the emp DataFrame is the same as the alternative id level of the ca MultiIndex. You can see the names of the levels on the MultiIndex like this:


In [10]:
ca.index.names


Out[10]:
FrozenList(['CASE_ID', 'TAZ_ID'])

Knowing the name on the alternatives portion of the idca data lets us join the employment data like this:


In [11]:
ca = ca.join(emp, on='TAZ_ID')

Then we bundle the raw data along with this newly organized idca data, into the larch.DataFrames structure, which is used for estimation. This structure also identifies a vector of the alterative codes and optionally, names and choice identifiers. This structure can be attached to a model as its dataservice.


In [12]:
dfs = larch.DataFrames(
    co=raw,
    ca=ca,
    alt_codes=skims.TAZ_ID, 
    alt_names=['TAZ{i}' for i in skims.TAZ_ID],
    ch_name='DTAZ',
    av=1,
)

In [13]:
dfs.info(1)


larch.DataFrames:  (not computation-ready)
  n_cases: 7564
  n_alts: 40
  data_ca:
    - distance      (302560 non-null float64)
    - logsum        (302560 non-null float64)
    - NONRETAIL_EMP (302560 non-null int64)
    - RETAIL_EMP    (302560 non-null int64)
    - TOTAL_EMP     (302560 non-null int64)
  data_co:
    - TOURID        (7564 non-null int64)
    - HHID          (7564 non-null int64)
    - PERSONID      (7564 non-null int64)
    - DTAZ          (7564 non-null int64)
    - TOURMODE      (7564 non-null int64)
    - TOURPURP      (7564 non-null int64)
    - N_STOPS       (7564 non-null int64)
    - N_TRIPS_x     (7564 non-null int64)
    - N_TRIPS_HBW_x (7564 non-null int64)
    - N_TRIPS_HBO_x (7564 non-null int64)
    - N_TRIPS_NHB_x (7564 non-null int64)
    - X             (7564 non-null float64)
    - Y             (7564 non-null float64)
    - INCOME        (7564 non-null float64)
    - N_VEHICLES    (7564 non-null int64)
    - HHSIZE        (7564 non-null int64)
    - geometry      (7564 non-null object)
    - HOMETAZ       (7564 non-null int64)
    - N_TRIPS_y     (7564 non-null int64)
    - N_TRIPS_HBW_y (7564 non-null int64)
    - N_TRIPS_HBO_y (7564 non-null int64)
    - N_TRIPS_NHB_y (7564 non-null int64)
    - N_WORKERS     (7564 non-null int64)
    - HHIDX         (7564 non-null int64)
    - AGE           (7564 non-null int64)
    - WORKS         (7564 non-null int64)
    - N_WORK_TOURS  (7564 non-null int64)
    - N_OTHER_TOURS (7564 non-null int64)
    - N_TOURS       (7564 non-null int64)
    - N_TRIPS       (7564 non-null int64)
    - N_TRIPS_HBW   (7564 non-null int64)
    - N_TRIPS_HBO   (7564 non-null int64)
    - N_TRIPS_NHB   (7564 non-null int64)
    - HOMETAZi      (7564 non-null int64)
    - DTAZi         (7564 non-null int64)
  data_av: <populated>
  data_ch: DTAZ

Model Definition


In [14]:
m = larch.Model(dataservice=dfs)
m.title = "Exampville Work Tour Destination Choice v1"

In [15]:
m.quantity_ca = (
        + P.EmpRetail_HighInc * X('RETAIL_EMP * (INCOME>50000)')
        + P.EmpNonRetail_HighInc * X('NONRETAIL_EMP') * X("INCOME>50000")
        + P.EmpRetail_LowInc * X('RETAIL_EMP') * X("INCOME<=50000")
        + P.EmpNonRetail_LowInc * X('NONRETAIL_EMP') * X("INCOME<=50000")
)

m.quantity_scale = P.Theta

In [16]:
m.utility_ca = (
    + P.logsum * X.logsum
    + P.distance * X.distance
)

In [17]:
m.lock_values(
    EmpRetail_HighInc=0,
    EmpRetail_LowInc=0,
)

Model Estimation


In [18]:
m.load_data()


req_data does not request {choice_ca,choice_co,choice_co_code} but choice is set and being provided
req_data does not request avail_ca or avail_co but it is set and being provided

In [19]:
m.loglike()


Out[19]:
-28238.3368809997

In [20]:
m.maximize_loglike()


Iteration 013 [Converged]

LL = -25157.726761693477

value initvalue nullvalue minimum maximum holdfast note best
EmpNonRetail_HighInc 1.363793 0.0 0.0 -inf inf 0 1.363793
EmpNonRetail_LowInc -0.881379 0.0 0.0 -inf inf 0 -0.881379
EmpRetail_HighInc 0.000000 0.0 0.0 0.000 0.0 1 0.000000
EmpRetail_LowInc 0.000000 0.0 0.0 0.000 0.0 1 0.000000
Theta 0.749374 1.0 1.0 0.001 1.0 0 0.749374
distance -0.041820 0.0 0.0 -inf inf 0 -0.041820
logsum 1.020821 0.0 0.0 -inf inf 0 1.020821
Out[20]:
keyvalue
x
0
EmpNonRetail_HighInc 1.363793
EmpNonRetail_LowInc -0.881379
EmpRetail_HighInc 0.000000
EmpRetail_LowInc 0.000000
Theta 0.749374
distance -0.041820
logsum 1.020821
loglike-25157.726761693477
d_loglike
0
EmpNonRetail_HighInc 0.003254
EmpNonRetail_LowInc 0.003049
EmpRetail_HighInc 0.000000
EmpRetail_LowInc 0.000000
Theta 0.006297
distance -0.014778
logsum -0.000878
nit13
nfev32
njev13
status0
message'Optimization terminated successfully.'
successTrue
elapsed_time0:00:02.601596
method'slsqp'
n_cases7564
iteration_number13
logloss3.3259818563846477

In [21]:
m.calculate_parameter_covariance()

Model Visualization

For destination choice and similar type models, it might be beneficial to review the observed and modeled choices, and the relative distribution of these choices across different factors. For example, we would probably want to see the distribution of travel distance. The Model object includes a built-in method to create this kind of visualization.


In [22]:
m.distribution_on_idca_variable('distance')


Out[22]:
<matplotlib.axes._subplots.AxesSubplot at 0x7faf2802c490>

The distribution_on_idca_variable has a variety of options, for example to control the number and range of the histogram bins:


In [23]:
m.distribution_on_idca_variable('distance', bins=40, range=(0,10))


Out[23]:
<matplotlib.axes._subplots.AxesSubplot at 0x7fafd031f5d0>

Alternatively, the histogram style can be swapped out for a smoothed kernel density function:


In [24]:
m.distribution_on_idca_variable(
    'distance',
    style='kde',
)


Out[24]:
<matplotlib.axes._subplots.AxesSubplot at 0x7faf40019090>

Subsets of the observations can be pulled out, to observe the distribution conditional on other idco factors, like income.


In [25]:
m.distribution_on_idca_variable(
    'distance',
    xlabel="Distance (miles)",
    bins=26,
    subselector='INCOME<10000',
    range=(0,13),
    header='Destination Distance, Very Low Income (<$10k) Households',
)


Out[25]:
<matplotlib.axes._subplots.AxesSubplot at 0x7faf902f5890>

Save and Report Model


In [26]:
report = larch.Reporter(title=m.title)

In [27]:
report << '# Parameter Summary' << m.parameter_summary()


Out[27]:

Parameter Summary

Value Std Err t Stat Signif Null Value Constrained
EmpNonRetail_HighInc  1.36  0.256  5.32 *** 0.00
EmpNonRetail_LowInc -0.881  0.0791 -11.14 *** 0.00
EmpRetail_HighInc  0.00  NA  NA 0.00 fixed value
EmpRetail_LowInc  0.00  NA  NA 0.00 fixed value
Theta  0.749  0.0152 -16.45 *** 1.00
distance -0.0418  0.0107 -3.90 *** 0.00
logsum  1.02  0.0317  32.16 *** 0.00

In [28]:
report << "# Estimation Statistics" << m.estimation_statistics()


Out[28]:

Estimation Statistics

StatisticAggregatePer Case
Number of Cases7564
Log Likelihood at Convergence-25157.73-3.33
Log Likelihood at Null Parameters-28238.34-3.73
Rho Squared w.r.t. Null Parameters0.109

In [29]:
report << "# Utility Functions" << m.utility_functions()


Out[29]:

Utility Functions

+ P.logsum * X.logsum
+ P.distance * X.distance
+ P.Theta * log(
   + exp(P.EmpRetail_HighInc) * X('RETAIL_EMP * (INCOME>50000)')
   + exp(P.EmpNonRetail_HighInc) * X('NONRETAIL_EMP*(INCOME>50000)')
   + exp(P.EmpRetail_LowInc) * X('RETAIL_EMP*(INCOME<=50000)')
   + exp(P.EmpNonRetail_LowInc) * X('NONRETAIL_EMP*(INCOME<=50000)')
)

The figures shown above can also be inserted directly into reports.


In [30]:
figure = m.distribution_on_idca_variable(
    'distance', 
    xlabel="Distance (miles)",
    style='kde',
    header='Destination Distance',
)
report << "# Visualization"
report << figure


Out[30]:

Visualization


In [31]:
report.save(
    '/tmp/exampville_dest_choice.html',
    overwrite=True,
    metadata=m,
)


Out[31]:
'/tmp/exampville_dest_choice.html'