In [1]:
%matplotlib inline
from matplotlib import pyplot as plt
import seaborn as sns
import numpy as np
Write a function find_peaks that finds and returns the indices of the local maxima in a sequence. Your function should:
In [10]:
def find_peaks(a):
"""Find the indices of the local maxima in a sequence."""
# YOUR CODE HERE
#raise NotImplementedError()
ind=[]
#next two if checks end points
if a[0]> a[1]:
ind.append(0)
if a[len(a)-1]>a[len(a)-2]:
ind.append(len(a)-1)
#finds local maxima in string by comparing adjacent
for i in range(1,len(a)-1):
if a[i]>a[i-1] and a[i]>a[i+1]:
ind.append(i)
#sorts by increasing order
return sorted(ind)
find_peaks([2,0,1,0,2,0,1])
Out[10]:
In [11]:
p1 = find_peaks([2,0,1,0,2,0,1])
assert np.allclose(p1, np.array([0,2,4,6]))
p2 = find_peaks(np.array([0,1,2,3]))
assert np.allclose(p2, np.array([3]))
p3 = find_peaks([3,2,1,0])
assert np.allclose(p3, np.array([0]))
Here is a string with the first 10000 digits of $\pi$ (after the decimal). Write code to perform the following:
np.diff to find the distances between consequtive local maxima.
In [12]:
from sympy import pi, N
pi_digits_str = str(N(pi, 10001))[2:]
In [84]:
# YOUR CODE HERE
#raise NotImplementedError()
def pimax(x):
'''uses find_peaks to find the local maxima then finds the space between the maxima and
plots the distribution of space between local maxima'''
pi=np.ones(10000)
for i in range(len(x)):
pi[i]=int(x[i])
m = find_peaks(pi)
dist = np.diff(m)
p = plt.hist(dist,bins=17)
plt.title('Distances Between Local Maxima in First 10000 digtis of $\pi$')
plt.xlabel('Distance Between Local Maxima')
plt.ylabel('Number of Times Occured')
plt.grid(False)
plt.xlim([1,19])
a=range(2,19)
plt.xticks(a[::2])
plt.ylim(0,1100)
plt.show()
pimax(pi_digits_str)
In [ ]:
assert True # use this for grading the pi digits histogram