Project Euler: Problem 6

https://projecteuler.net/problem=6

The sum of the squares of the first ten natural numbers is,

$$1^2 + 2^2 + ... + 10^2 = 385$$

The square of the sum of the first ten natural numbers is,

$$(1 + 2 + ... + 10)^2 = 552 = 3025$$

Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 − 385 = 2640.


In [15]:
z=0
#squares number and adds it to z 
#will produce the sum of the squares of the numbers 0 to 100
for i in range(101):
    z+=i**2

In [16]:
y=0
#adds all numbers in range to y 
#will produce the sum of all the numbers from 0 to 100
for x in range(101):
    y+=x

In [19]:
print(y**2-z)


25164150

In [ ]:
# This cell will be used for grading, leave it at the end of the notebook.