In [59]:
%matplotlib inline
from matplotlib import pyplot as plt
import seaborn as sns
import numpy as np
Write a function find_peaks that finds and returns the indices of the local maxima in a sequence. Your function should:
In [60]:
def find_peaks(a):
"""Find the indices of the local maxima in a sequence."""
leest = []
if a[0] > a[1]:
leest.append(0)
for x in range(1,len(a)-1):
if (a[x-1]<a[x]) and (a[x]>a[x+1]):
leest.append(x)
if a[len(a)-1] > a[len(a)-2]:
leest.append(len(a)-1)
return leest
In [61]:
p1 = find_peaks([2,0,1,0,2,0,1])
assert np.allclose(p1, np.array([0,2,4,6]))
p2 = find_peaks(np.array([0,1,2,3]))
assert np.allclose(p2, np.array([3]))
p3 = find_peaks([3,2,1,0])
assert np.allclose(p3, np.array([0]))
Here is a string with the first 10000 digits of $\pi$ (after the decimal). Write code to perform the following:
np.diff to find the distances between consequtive local maxima.
In [62]:
from sympy import pi, N
pi_digits_str = str(N(pi, 10001))[2:]
In [63]:
x = np.zeros(10000, dtype=int )
for a in range(len(pi_digits_str)):
x[a] = int(pi_digits_str[a])
ind = find_peaks(x)
dis = np.diff(ind)
plt.hist(dis, bins=20, range=(0,15))
plt.title('Distribution of local Maxima in Pi')
plt.xlabel('Distantce between local maxima')
plt.ylabel('Frequency')
plt.show()
In [64]:
assert True # use this for grading the pi digits histogram