In [1]:
    
from __future__ import division, print_function, absolute_import
    
In [2]:
    
import tflearn
    
In [3]:
    
from tflearn.layers.core import input_data, dropout, fully_connected
from tflearn.layers.conv import conv_2d, max_pool_2d
from tflearn.layers.normalization import local_response_normalization
from tflearn.layers.estimator import regression
    
In [4]:
    
import tflearn.datasets.oxflower17 as oxflower17
    
In [5]:
    
X, Y = oxflower17.load_data(one_hot=True, resize_pics=(227, 227))
    
    
    
    
In [6]:
    
network = input_data(shape=[None, 227, 227, 3])
network = conv_2d(network, 96, 11, strides=4, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 256, 5, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 384, 3, activation='relu')
network = conv_2d(network, 256, 3, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 4096, activation='tanh')
network = dropout(network, 0.5)
network = fully_connected(network, 17, activation='softmax')
network = regression(network, optimizer='momentum',
                     loss='categorical_crossentropy',
                     learning_rate=0.001)
    
    
In [7]:
    
model = tflearn.DNN(network, checkpoint_path='model_alexnet',
                    max_checkpoints=1, tensorboard_verbose=2)
    
In [9]:
    
# n_epoch=1000 is recommended:
model.fit(X, Y, n_epoch=10, validation_set=0.1, shuffle=True,
          show_metric=True, batch_size=64, snapshot_step=200,
          snapshot_epoch=False, run_id='alexnet_oxflowers17')
    
    
In [ ]: