In [1]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

Examine all of the data


In [2]:
# Economic performance data -- epd
epd = pd.read_csv('economic_performance.csv')
epd.describe()


Out[2]:
Data
count 1.178300e+04
mean 3.391635e+08
std 4.206478e+09
min 2.800000e-02
25% 8.493000e+01
50% 1.311190e+05
75% 1.752482e+06
max 1.110910e+11

In [3]:
epd.describe(include='all')


Out[3]:
Name DataType Date Data Period Current - Latest Period Current - Prior Period Current - One Year Ago Current - Change Vs. Prior Period Current - Change Vs. One Year Ago
count 11783 11783 11783 1.178300e+04 11783 11783 11735 11350 11735 11350
unique 44 4 593 NaN 3 8914 8881 8617 980 1039
top Unemployment Rate integer Sep-2012 NaN Monthly 4.3% 4.3% 4.1% 0% 3%
freq 1364 5237 32 NaN 10857 36 36 36 1357 555
mean NaN NaN NaN 3.391635e+08 NaN NaN NaN NaN NaN NaN
std NaN NaN NaN 4.206478e+09 NaN NaN NaN NaN NaN NaN
min NaN NaN NaN 2.800000e-02 NaN NaN NaN NaN NaN NaN
25% NaN NaN NaN 8.493000e+01 NaN NaN NaN NaN NaN NaN
50% NaN NaN NaN 1.311190e+05 NaN NaN NaN NaN NaN NaN
75% NaN NaN NaN 1.752482e+06 NaN NaN NaN NaN NaN NaN
max NaN NaN NaN 1.110910e+11 NaN NaN NaN NaN NaN NaN

In [4]:
names = epd['Name'].unique(); names


Out[4]:
array(['Population (Demographer)', 'Taxable Retail Sales',
       'Gross Domestic Product', 'Personal Income',
       'Per Capita Personal Income', 'Labor Force', 'Employment',
       'Unemployment', 'Unemployment Rate', 'Total Nonfarm Employment',
       'Private Employment', 'Government Employment',
       'Average Weekly Hours Worked - Private',
       'Average Weekly Wages - Private', 'Private Establishments',
       'Industrial Market Avg. Asking Rents PSF',
       'Industrial Market Vacancy Rate',
       'Office Market Avg. Asking Rents PSF',
       'Office Market Vacancy Rate',
       'Retail Market Avg. Asking Rents PSF',
       'Retail Market Vacancy Rate', 'New Commercial Buildings Permitted',
       'Value of New Commercial Buildings Permitted',
       'Cost of Living Index', 'Gross Casino Gaming Revenue',
       'Hotel Room Inventory', 'Hotel/Motel Occupancy Rate',
       'Average Daily Room Rate', 'Visitor Volume',
       'McCarran International Airport Passengers',
       'Gallons of Gasoline Sold', 'New Home Closings',
       'New Home Median Closing Price', 'New Residential Units Permitted',
       'Value of New Residential Units Permitted',
       'Existing Home Median Closing Price', 'Existing Home Closings',
       'MLS Listings', 'Apartment Market Average Asking Rents',
       'Apartment Market Vacancy Rate', 'Apartment Market Occupancy Rate',
       'Drivers License Surrenders', 'Electric Meter Hookups',
       'Total Enrollment'], dtype=object)

Import population data for Nevada:


In [5]:
population = pd.read_csv('nevada_population.csv'); population.head()


Out[5]:
Name DataType Date Data Period Current - Latest Period Current - Prior Period Current - One Year Ago Current - Change Vs. Prior Period Current - Change Vs. One Year Ago
0 Population integer 1900 43000.0 Annually 43,000 NaN NaN NaN NaN
1 Population integer 1901 45000.0 Annually 45,000 43,000 43,000 5% 5%
2 Population integer 1902 49000.0 Annually 49,000 45,000 45,000 9% 9%
3 Population integer 1903 52000.0 Annually 52,000 49,000 49,000 6% 6%
4 Population integer 1904 56000.0 Annually 56,000 52,000 52,000 8% 8%

In [6]:
population.tail()


Out[6]:
Name DataType Date Data Period Current - Latest Period Current - Prior Period Current - One Year Ago Current - Change Vs. Prior Period Current - Change Vs. One Year Ago
113 Population integer 2013 2786547.0 Annually 2,786,547 2,752,410 2,752,410 1% 1%
114 Population integer 2014 2831730.0 Annually 2,831,730 2,786,547 2,786,547 2% 2%
115 Population integer 2015 2883057.0 Annually 2,883,057 2,831,730 2,831,730 2% 2%
116 Population integer 2016 2939254.0 Annually 2,939,254 2,883,057 2,883,057 2% 2%
117 Population integer 2017 2998039.0 Annually 2,998,039 2,939,254 2,939,254 2% 2%

In [7]:
population.shape


Out[7]:
(118, 10)

In [8]:
population.describe()


Out[8]:
Date Data
count 118.000000 1.180000e+02
mean 1958.500000 7.460691e+05
std 34.207699 8.964108e+05
min 1900.000000 4.300000e+04
25% 1929.250000 9.050000e+04
50% 1958.500000 2.740000e+05
75% 1987.750000 1.062110e+06
max 2017.000000 2.998039e+06

In [9]:
population.describe(include='all')


Out[9]:
Name DataType Date Data Period Current - Latest Period Current - Prior Period Current - One Year Ago Current - Change Vs. Prior Period Current - Change Vs. One Year Ago
count 118 118 118.000000 1.180000e+02 118 118 117 117 117 117
unique 1 1 NaN NaN 1 107 106 106 19 19
top Population integer NaN NaN Annually 82,000 82,000 82,000 4% 4%
freq 118 118 NaN NaN 118 5 5 5 20 20
mean NaN NaN 1958.500000 7.460691e+05 NaN NaN NaN NaN NaN NaN
std NaN NaN 34.207699 8.964108e+05 NaN NaN NaN NaN NaN NaN
min NaN NaN 1900.000000 4.300000e+04 NaN NaN NaN NaN NaN NaN
25% NaN NaN 1929.250000 9.050000e+04 NaN NaN NaN NaN NaN NaN
50% NaN NaN 1958.500000 2.740000e+05 NaN NaN NaN NaN NaN NaN
75% NaN NaN 1987.750000 1.062110e+06 NaN NaN NaN NaN NaN NaN
max NaN NaN 2017.000000 2.998039e+06 NaN NaN NaN NaN NaN NaN

Visualize the population data


In [10]:
dates = range(1900,2018)
plt.plot(dates, population['Data'])
plt.title('Nevada Population Growth 1900-2017')
plt.show()


Import Personal Income Data for Nevada


In [11]:
# Per Capita Personal Income -- pcpi
pcpi = pd.read_csv('personal_income.csv'); pcpi.head()


Out[11]:
Name DataType Date Data Period Current - Latest Period Current - Prior Period Current - One Year Ago Current - Change Vs. Prior Period Current - Change Vs. One Year Ago
0 Per Capita Personal Income currency 1929 874.0 Annually $874 NaN NaN NaN NaN
1 Per Capita Personal Income currency 1930 834.0 Annually $834 $874 $874 -5% -5%
2 Per Capita Personal Income currency 1931 665.0 Annually $665 $834 $834 -20% -20%
3 Per Capita Personal Income currency 1932 557.0 Annually $557 $665 $665 -16% -16%
4 Per Capita Personal Income currency 1933 499.0 Annually $499 $557 $557 -10% -10%

In [12]:
pcpi.describe(include='all')


Out[12]:
Name DataType Date Data Period Current - Latest Period Current - Prior Period Current - One Year Ago Current - Change Vs. Prior Period Current - Change Vs. One Year Ago
count 89 89 89.000000 89.000000 89 89 88 88 88 88
unique 1 1 NaN NaN 1 89 88 88 28 28
top Per Capita Personal Income currency NaN NaN Annually $7,225 $7,225 $7,225 3% 3%
freq 89 89 NaN NaN 89 1 1 1 10 10
mean NaN NaN 1973.000000 14011.348315 NaN NaN NaN NaN NaN NaN
std NaN NaN 25.836021 14465.977545 NaN NaN NaN NaN NaN NaN
min NaN NaN 1929.000000 499.000000 NaN NaN NaN NaN NaN NaN
25% NaN NaN 1951.000000 2288.000000 NaN NaN NaN NaN NaN NaN
50% NaN NaN 1973.000000 6296.000000 NaN NaN NaN NaN NaN NaN
75% NaN NaN 1995.000000 25346.000000 NaN NaN NaN NaN NaN NaN
max NaN NaN 2017.000000 44626.000000 NaN NaN NaN NaN NaN NaN

In [13]:
pcpi.shape


Out[13]:
(89, 10)

In [14]:
# Make sure that the dataframes have the same shape for plotting
rs_pop = population[29:]; rs_pop.shape


Out[14]:
(89, 10)

In [15]:
dates = range(1929,2018)
# plt.plot(dates, rs_pop['Data'])
plt.plot(dates, pcpi['Data'])
plt.title('Nevada Per Capita Personal Income 1929-2017')
plt.show()


Import Airport Passenger Data


In [16]:
# Airport Passengers All Airports -- apaa
apaa = pd.read_csv('airport_passengers.csv'); apaa.describe(include='all')


Out[16]:
Name DataType Date Data Period Current - Latest Period Current - Prior Period Current - One Year Ago Current - Change Vs. Prior Period Current - Change Vs. One Year Ago
count 159 159 159 1.590000e+02 159 159 158 147 158 147
unique 1 1 159 NaN 1 159 158 147 31 25
top Airport Passengers integer Dec-2013 NaN Monthly 3,846,771 3,846,771 3,846,771 -1% 2%
freq 159 159 1 NaN 159 1 1 1 24 18
mean NaN NaN NaN 4.035191e+06 NaN NaN NaN NaN NaN NaN
std NaN NaN NaN 3.746676e+05 NaN NaN NaN NaN NaN NaN
min NaN NaN NaN 3.184564e+06 NaN NaN NaN NaN NaN NaN
25% NaN NaN NaN 3.800626e+06 NaN NaN NaN NaN NaN NaN
50% NaN NaN NaN 4.025903e+06 NaN NaN NaN NaN NaN NaN
75% NaN NaN NaN 4.335499e+06 NaN NaN NaN NaN NaN NaN
max NaN NaN NaN 4.822538e+06 NaN NaN NaN NaN NaN NaN

In [17]:
apaa.head()


Out[17]:
Name DataType Date Data Period Current - Latest Period Current - Prior Period Current - One Year Ago Current - Change Vs. Prior Period Current - Change Vs. One Year Ago
0 Airport Passengers integer Jul-2004 4257745.0 Monthly 4,257,745 NaN NaN NaN NaN
1 Airport Passengers integer Aug-2004 4200675.0 Monthly 4,200,675 4,257,745 NaN -1% NaN
2 Airport Passengers integer Sep-2004 3892548.0 Monthly 3,892,548 4,200,675 NaN -7% NaN
3 Airport Passengers integer Oct-2004 4148764.0 Monthly 4,148,764 3,892,548 NaN 7% NaN
4 Airport Passengers integer Nov-2004 3843258.0 Monthly 3,843,258 4,148,764 NaN -7% NaN

In [18]:
apaa.tail()


Out[18]:
Name DataType Date Data Period Current - Latest Period Current - Prior Period Current - One Year Ago Current - Change Vs. Prior Period Current - Change Vs. One Year Ago
154 Airport Passengers integer May-2017 4560853.0 Monthly 4,560,853 4,400,012 4,471,129 4% 2%
155 Airport Passengers integer Jun-2017 4595597.0 Monthly 4,595,597 4,560,853 4,502,348 1% 2%
156 Airport Passengers integer Jul-2017 4759389.0 Monthly 4,759,389 4,595,597 4,557,434 4% 4%
157 Airport Passengers integer Aug-2017 4672230.0 Monthly 4,672,230 4,759,389 4,477,838 -2% 4%
158 Airport Passengers integer Sep-2017 4452317.0 Monthly 4,452,317 4,672,230 4,413,895 -5% 1%

In [19]:
dates = (np.arange(0,180,step=12))
plt.plot(apaa['Data'])
plt.xticks(dates,range(4,19))
plt.title("Airport Passenger Counts For All Nevada Airports")
plt.xlabel('Dates range from July 2004 to September 2017')
plt.show()


Import Visitor Volume Data


In [40]:
vv = pd.read_csv('visitor_volume.csv'); vv.head()


Out[40]:
Name DataType Date Data Period Current - Latest Period Current - Prior Period Current - One Year Ago Current - Change Vs. Prior Period Current - Change Vs. One Year Ago
0 Visitor Volume integer Oct-1996 3686143.0 Monthly 3,686,143 NaN NaN NaN NaN
1 Visitor Volume integer Nov-1996 3302097.0 Monthly 3,302,097 3,686,143 NaN -10% NaN
2 Visitor Volume integer Dec-1996 3056143.0 Monthly 3,056,143 3,302,097 NaN -7% NaN
3 Visitor Volume integer Jan-1997 3377731.0 Monthly 3,377,731 3,056,143 NaN 11% NaN
4 Visitor Volume integer Feb-1997 3340058.0 Monthly 3,340,058 3,377,731 NaN -1% NaN

In [41]:
vv.describe(include='all')


Out[41]:
Name DataType Date Data Period Current - Latest Period Current - Prior Period Current - One Year Ago Current - Change Vs. Prior Period Current - Change Vs. One Year Ago
count 255 255 255 2.530000e+02 255 255 252 243 252 243
unique 1 1 255 NaN 1 254 252 243 37 32
top Visitor Volume integer Dec-2013 NaN Monthly n.a. 4,076,789 4,076,789 1% 1%
freq 255 255 1 NaN 255 2 1 1 20 30
mean NaN NaN NaN 4.224980e+06 NaN NaN NaN NaN NaN NaN
std NaN NaN NaN 4.277735e+05 NaN NaN NaN NaN NaN NaN
min NaN NaN NaN 3.056143e+06 NaN NaN NaN NaN NaN NaN
25% NaN NaN NaN 3.899251e+06 NaN NaN NaN NaN NaN NaN
50% NaN NaN NaN 4.260492e+06 NaN NaN NaN NaN NaN NaN
75% NaN NaN NaN 4.549456e+06 NaN NaN NaN NaN NaN NaN
max NaN NaN NaN 5.240708e+06 NaN NaN NaN NaN NaN NaN

In [47]:
plt.plot(vv['Data'])
plt.show()


Import Nevada Gaming Revenue


In [48]:
# Gross Casino Gaming Revenue
gcgr = pd.read_csv('gaming_revenue.csv'); gcgr.head()


Out[48]:
Name DataType Date Data Period Current - Latest Period Current - Prior Period Current - One Year Ago Current - Change Vs. Prior Period Current - Change Vs. One Year Ago
0 Gross Casino Gaming Revenue currency Apr-1983 241286383.0 Monthly $241,286,383 NaN NaN NaN NaN
1 Gross Casino Gaming Revenue currency May-1983 243923340.0 Monthly $243,923,340 $241,286,383 NaN 1% NaN
2 Gross Casino Gaming Revenue currency Jun-1983 238944420.0 Monthly $238,944,420 $243,923,340 NaN -2% NaN
3 Gross Casino Gaming Revenue currency Jul-1983 277215594.0 Monthly $277,215,594 $238,944,420 NaN 16% NaN
4 Gross Casino Gaming Revenue currency Aug-1983 252093854.0 Monthly $252,093,854 $277,215,594 NaN -9% NaN

In [49]:
gcgr.describe(include='all')


Out[49]:
Name DataType Date Data Period Current - Latest Period Current - Prior Period Current - One Year Ago Current - Change Vs. Prior Period Current - Change Vs. One Year Ago
count 422 422 422 4.220000e+02 422 422 421 410 421 410
unique 1 1 422 NaN 1 422 421 410 45 44
top Gross Casino Gaming Revenue currency Dec-2013 NaN Monthly $371,380,445 $371,380,445 $371,380,445 -3% 4%
freq 422 422 1 NaN 422 1 1 1 26 25
mean NaN NaN NaN 7.020014e+08 NaN NaN NaN NaN NaN NaN
std NaN NaN NaN 2.524294e+08 NaN NaN NaN NaN NaN NaN
min NaN NaN NaN 2.178806e+08 NaN NaN NaN NaN NaN NaN
25% NaN NaN NaN 4.784285e+08 NaN NaN NaN NaN NaN NaN
50% NaN NaN NaN 7.666464e+08 NaN NaN NaN NaN NaN NaN
75% NaN NaN NaN 9.102001e+08 NaN NaN NaN NaN NaN NaN
max NaN NaN NaN 1.165203e+09 NaN NaN NaN NaN NaN NaN

In [46]:
plt.plot(gcgr['Data'])
plt.show()



In [ ]: