In [1]:
    
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
    
In [2]:
    
# Economic performance data -- epd
epd = pd.read_csv('economic_performance.csv')
epd.describe()
    
    Out[2]:
  
    
       
      Data 
     
  
  
    
      count 
      1.178300e+04 
     
    
      mean 
      3.391635e+08 
     
    
      std 
      4.206478e+09 
     
    
      min 
      2.800000e-02 
     
    
      25% 
      8.493000e+01 
     
    
      50% 
      1.311190e+05 
     
    
      75% 
      1.752482e+06 
     
    
      max 
      1.110910e+11 
     
  
In [3]:
    
epd.describe(include='all')
    
    Out[3]:
  
    
       
      Name 
      DataType 
      Date 
      Data 
      Period 
      Current - Latest Period 
      Current - Prior Period 
      Current - One Year Ago 
      Current - Change Vs. Prior Period 
      Current - Change Vs. One Year Ago 
     
  
  
    
      count 
      11783 
      11783 
      11783 
      1.178300e+04 
      11783 
      11783 
      11735 
      11350 
      11735 
      11350 
     
    
      unique 
      44 
      4 
      593 
      NaN 
      3 
      8914 
      8881 
      8617 
      980 
      1039 
     
    
      top 
      Unemployment Rate 
      integer 
      Sep-2012 
      NaN 
      Monthly 
      4.3% 
      4.3% 
      4.1% 
      0% 
      3% 
     
    
      freq 
      1364 
      5237 
      32 
      NaN 
      10857 
      36 
      36 
      36 
      1357 
      555 
     
    
      mean 
      NaN 
      NaN 
      NaN 
      3.391635e+08 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
     
    
      std 
      NaN 
      NaN 
      NaN 
      4.206478e+09 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
     
    
      min 
      NaN 
      NaN 
      NaN 
      2.800000e-02 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
     
    
      25% 
      NaN 
      NaN 
      NaN 
      8.493000e+01 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
     
    
      50% 
      NaN 
      NaN 
      NaN 
      1.311190e+05 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
     
    
      75% 
      NaN 
      NaN 
      NaN 
      1.752482e+06 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
     
    
      max 
      NaN 
      NaN 
      NaN 
      1.110910e+11 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
     
  
In [4]:
    
names = epd['Name'].unique(); names
    
    Out[4]:
array(['Population (Demographer)', 'Taxable Retail Sales',
       'Gross Domestic Product', 'Personal Income',
       'Per Capita Personal Income', 'Labor Force', 'Employment',
       'Unemployment', 'Unemployment Rate', 'Total Nonfarm Employment',
       'Private Employment', 'Government Employment',
       'Average Weekly Hours Worked - Private',
       'Average Weekly Wages - Private', 'Private Establishments',
       'Industrial Market Avg. Asking Rents PSF',
       'Industrial Market Vacancy Rate',
       'Office Market Avg. Asking Rents PSF',
       'Office Market Vacancy Rate',
       'Retail Market Avg. Asking Rents PSF',
       'Retail Market Vacancy Rate', 'New Commercial Buildings Permitted',
       'Value of New Commercial Buildings Permitted',
       'Cost of Living Index', 'Gross Casino Gaming Revenue',
       'Hotel Room Inventory', 'Hotel/Motel Occupancy Rate',
       'Average Daily Room Rate', 'Visitor Volume',
       'McCarran International Airport Passengers',
       'Gallons of Gasoline Sold', 'New Home Closings',
       'New Home Median Closing Price', 'New Residential Units Permitted',
       'Value of New Residential Units Permitted',
       'Existing Home Median Closing Price', 'Existing Home Closings',
       'MLS Listings', 'Apartment Market Average Asking Rents',
       'Apartment Market Vacancy Rate', 'Apartment Market Occupancy Rate',
       'Drivers License Surrenders', 'Electric Meter Hookups',
       'Total Enrollment'], dtype=object)
In [5]:
    
population = pd.read_csv('nevada_population.csv'); population.head()
    
    Out[5]:
  
    
       
      Name 
      DataType 
      Date 
      Data 
      Period 
      Current - Latest Period 
      Current - Prior Period 
      Current - One Year Ago 
      Current - Change Vs. Prior Period 
      Current - Change Vs. One Year Ago 
     
  
  
    
      0 
      Population 
      integer 
      1900 
      43000.0 
      Annually 
      43,000 
      NaN 
      NaN 
      NaN 
      NaN 
     
    
      1 
      Population 
      integer 
      1901 
      45000.0 
      Annually 
      45,000 
      43,000 
      43,000 
      5% 
      5% 
     
    
      2 
      Population 
      integer 
      1902 
      49000.0 
      Annually 
      49,000 
      45,000 
      45,000 
      9% 
      9% 
     
    
      3 
      Population 
      integer 
      1903 
      52000.0 
      Annually 
      52,000 
      49,000 
      49,000 
      6% 
      6% 
     
    
      4 
      Population 
      integer 
      1904 
      56000.0 
      Annually 
      56,000 
      52,000 
      52,000 
      8% 
      8% 
     
  
In [6]:
    
population.tail()
    
    Out[6]:
  
    
       
      Name 
      DataType 
      Date 
      Data 
      Period 
      Current - Latest Period 
      Current - Prior Period 
      Current - One Year Ago 
      Current - Change Vs. Prior Period 
      Current - Change Vs. One Year Ago 
     
  
  
    
      113 
      Population 
      integer 
      2013 
      2786547.0 
      Annually 
      2,786,547 
      2,752,410 
      2,752,410 
      1% 
      1% 
     
    
      114 
      Population 
      integer 
      2014 
      2831730.0 
      Annually 
      2,831,730 
      2,786,547 
      2,786,547 
      2% 
      2% 
     
    
      115 
      Population 
      integer 
      2015 
      2883057.0 
      Annually 
      2,883,057 
      2,831,730 
      2,831,730 
      2% 
      2% 
     
    
      116 
      Population 
      integer 
      2016 
      2939254.0 
      Annually 
      2,939,254 
      2,883,057 
      2,883,057 
      2% 
      2% 
     
    
      117 
      Population 
      integer 
      2017 
      2998039.0 
      Annually 
      2,998,039 
      2,939,254 
      2,939,254 
      2% 
      2% 
     
  
In [7]:
    
population.shape
    
    Out[7]:
(118, 10)
In [8]:
    
population.describe()
    
    Out[8]:
  
    
       
      Date 
      Data 
     
  
  
    
      count 
      118.000000 
      1.180000e+02 
     
    
      mean 
      1958.500000 
      7.460691e+05 
     
    
      std 
      34.207699 
      8.964108e+05 
     
    
      min 
      1900.000000 
      4.300000e+04 
     
    
      25% 
      1929.250000 
      9.050000e+04 
     
    
      50% 
      1958.500000 
      2.740000e+05 
     
    
      75% 
      1987.750000 
      1.062110e+06 
     
    
      max 
      2017.000000 
      2.998039e+06 
     
  
In [9]:
    
population.describe(include='all')
    
    Out[9]:
  
    
       
      Name 
      DataType 
      Date 
      Data 
      Period 
      Current - Latest Period 
      Current - Prior Period 
      Current - One Year Ago 
      Current - Change Vs. Prior Period 
      Current - Change Vs. One Year Ago 
     
  
  
    
      count 
      118 
      118 
      118.000000 
      1.180000e+02 
      118 
      118 
      117 
      117 
      117 
      117 
     
    
      unique 
      1 
      1 
      NaN 
      NaN 
      1 
      107 
      106 
      106 
      19 
      19 
     
    
      top 
      Population 
      integer 
      NaN 
      NaN 
      Annually 
      82,000 
      82,000 
      82,000 
      4% 
      4% 
     
    
      freq 
      118 
      118 
      NaN 
      NaN 
      118 
      5 
      5 
      5 
      20 
      20 
     
    
      mean 
      NaN 
      NaN 
      1958.500000 
      7.460691e+05 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
     
    
      std 
      NaN 
      NaN 
      34.207699 
      8.964108e+05 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
     
    
      min 
      NaN 
      NaN 
      1900.000000 
      4.300000e+04 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
     
    
      25% 
      NaN 
      NaN 
      1929.250000 
      9.050000e+04 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
     
    
      50% 
      NaN 
      NaN 
      1958.500000 
      2.740000e+05 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
     
    
      75% 
      NaN 
      NaN 
      1987.750000 
      1.062110e+06 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
     
    
      max 
      NaN 
      NaN 
      2017.000000 
      2.998039e+06 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
     
  
In [10]:
    
dates = range(1900,2018)
plt.plot(dates, population['Data'])
plt.title('Nevada Population Growth 1900-2017')
plt.show()
    
    
 
In [11]:
    
# Per Capita Personal Income -- pcpi
pcpi = pd.read_csv('personal_income.csv'); pcpi.head()
    
    Out[11]:
  
    
       
      Name 
      DataType 
      Date 
      Data 
      Period 
      Current - Latest Period 
      Current - Prior Period 
      Current - One Year Ago 
      Current - Change Vs. Prior Period 
      Current - Change Vs. One Year Ago 
     
  
  
    
      0 
      Per Capita Personal Income 
      currency 
      1929 
      874.0 
      Annually 
      $874 
      NaN 
      NaN 
      NaN 
      NaN 
     
    
      1 
      Per Capita Personal Income 
      currency 
      1930 
      834.0 
      Annually 
      $834 
      $874 
      $874 
      -5% 
      -5% 
     
    
      2 
      Per Capita Personal Income 
      currency 
      1931 
      665.0 
      Annually 
      $665 
      $834 
      $834 
      -20% 
      -20% 
     
    
      3 
      Per Capita Personal Income 
      currency 
      1932 
      557.0 
      Annually 
      $557 
      $665 
      $665 
      -16% 
      -16% 
     
    
      4 
      Per Capita Personal Income 
      currency 
      1933 
      499.0 
      Annually 
      $499 
      $557 
      $557 
      -10% 
      -10% 
     
  
In [12]:
    
pcpi.describe(include='all')
    
    Out[12]:
  
    
       
      Name 
      DataType 
      Date 
      Data 
      Period 
      Current - Latest Period 
      Current - Prior Period 
      Current - One Year Ago 
      Current - Change Vs. Prior Period 
      Current - Change Vs. One Year Ago 
     
  
  
    
      count 
      89 
      89 
      89.000000 
      89.000000 
      89 
      89 
      88 
      88 
      88 
      88 
     
    
      unique 
      1 
      1 
      NaN 
      NaN 
      1 
      89 
      88 
      88 
      28 
      28 
     
    
      top 
      Per Capita Personal Income 
      currency 
      NaN 
      NaN 
      Annually 
      $7,225 
      $7,225 
      $7,225 
      3% 
      3% 
     
    
      freq 
      89 
      89 
      NaN 
      NaN 
      89 
      1 
      1 
      1 
      10 
      10 
     
    
      mean 
      NaN 
      NaN 
      1973.000000 
      14011.348315 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
     
    
      std 
      NaN 
      NaN 
      25.836021 
      14465.977545 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
     
    
      min 
      NaN 
      NaN 
      1929.000000 
      499.000000 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
     
    
      25% 
      NaN 
      NaN 
      1951.000000 
      2288.000000 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
     
    
      50% 
      NaN 
      NaN 
      1973.000000 
      6296.000000 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
     
    
      75% 
      NaN 
      NaN 
      1995.000000 
      25346.000000 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
     
    
      max 
      NaN 
      NaN 
      2017.000000 
      44626.000000 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
     
  
In [13]:
    
pcpi.shape
    
    Out[13]:
(89, 10)
In [14]:
    
# Make sure that the dataframes have the same shape for plotting
rs_pop = population[29:]; rs_pop.shape
    
    Out[14]:
(89, 10)
In [15]:
    
dates = range(1929,2018)
# plt.plot(dates, rs_pop['Data'])
plt.plot(dates, pcpi['Data'])
plt.title('Nevada Per Capita Personal Income 1929-2017')
plt.show()
    
    
 
In [16]:
    
# Airport Passengers All Airports -- apaa
apaa = pd.read_csv('airport_passengers.csv'); apaa.describe(include='all')
    
    Out[16]:
  
    
       
      Name 
      DataType 
      Date 
      Data 
      Period 
      Current - Latest Period 
      Current - Prior Period 
      Current - One Year Ago 
      Current - Change Vs. Prior Period 
      Current - Change Vs. One Year Ago 
     
  
  
    
      count 
      159 
      159 
      159 
      1.590000e+02 
      159 
      159 
      158 
      147 
      158 
      147 
     
    
      unique 
      1 
      1 
      159 
      NaN 
      1 
      159 
      158 
      147 
      31 
      25 
     
    
      top 
      Airport Passengers 
      integer 
      Dec-2013 
      NaN 
      Monthly 
      3,846,771 
      3,846,771 
      3,846,771 
      -1% 
      2% 
     
    
      freq 
      159 
      159 
      1 
      NaN 
      159 
      1 
      1 
      1 
      24 
      18 
     
    
      mean 
      NaN 
      NaN 
      NaN 
      4.035191e+06 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
     
    
      std 
      NaN 
      NaN 
      NaN 
      3.746676e+05 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
     
    
      min 
      NaN 
      NaN 
      NaN 
      3.184564e+06 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
     
    
      25% 
      NaN 
      NaN 
      NaN 
      3.800626e+06 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
     
    
      50% 
      NaN 
      NaN 
      NaN 
      4.025903e+06 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
     
    
      75% 
      NaN 
      NaN 
      NaN 
      4.335499e+06 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
     
    
      max 
      NaN 
      NaN 
      NaN 
      4.822538e+06 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
     
  
In [17]:
    
apaa.head()
    
    Out[17]:
  
    
       
      Name 
      DataType 
      Date 
      Data 
      Period 
      Current - Latest Period 
      Current - Prior Period 
      Current - One Year Ago 
      Current - Change Vs. Prior Period 
      Current - Change Vs. One Year Ago 
     
  
  
    
      0 
      Airport Passengers 
      integer 
      Jul-2004 
      4257745.0 
      Monthly 
      4,257,745 
      NaN 
      NaN 
      NaN 
      NaN 
     
    
      1 
      Airport Passengers 
      integer 
      Aug-2004 
      4200675.0 
      Monthly 
      4,200,675 
      4,257,745 
      NaN 
      -1% 
      NaN 
     
    
      2 
      Airport Passengers 
      integer 
      Sep-2004 
      3892548.0 
      Monthly 
      3,892,548 
      4,200,675 
      NaN 
      -7% 
      NaN 
     
    
      3 
      Airport Passengers 
      integer 
      Oct-2004 
      4148764.0 
      Monthly 
      4,148,764 
      3,892,548 
      NaN 
      7% 
      NaN 
     
    
      4 
      Airport Passengers 
      integer 
      Nov-2004 
      3843258.0 
      Monthly 
      3,843,258 
      4,148,764 
      NaN 
      -7% 
      NaN 
     
  
In [18]:
    
apaa.tail()
    
    Out[18]:
  
    
       
      Name 
      DataType 
      Date 
      Data 
      Period 
      Current - Latest Period 
      Current - Prior Period 
      Current - One Year Ago 
      Current - Change Vs. Prior Period 
      Current - Change Vs. One Year Ago 
     
  
  
    
      154 
      Airport Passengers 
      integer 
      May-2017 
      4560853.0 
      Monthly 
      4,560,853 
      4,400,012 
      4,471,129 
      4% 
      2% 
     
    
      155 
      Airport Passengers 
      integer 
      Jun-2017 
      4595597.0 
      Monthly 
      4,595,597 
      4,560,853 
      4,502,348 
      1% 
      2% 
     
    
      156 
      Airport Passengers 
      integer 
      Jul-2017 
      4759389.0 
      Monthly 
      4,759,389 
      4,595,597 
      4,557,434 
      4% 
      4% 
     
    
      157 
      Airport Passengers 
      integer 
      Aug-2017 
      4672230.0 
      Monthly 
      4,672,230 
      4,759,389 
      4,477,838 
      -2% 
      4% 
     
    
      158 
      Airport Passengers 
      integer 
      Sep-2017 
      4452317.0 
      Monthly 
      4,452,317 
      4,672,230 
      4,413,895 
      -5% 
      1% 
     
  
In [19]:
    
dates = (np.arange(0,180,step=12))
plt.plot(apaa['Data'])
plt.xticks(dates,range(4,19))
plt.title("Airport Passenger Counts For All Nevada Airports")
plt.xlabel('Dates range from July 2004 to September 2017')
plt.show()
    
    
 
In [40]:
    
vv = pd.read_csv('visitor_volume.csv'); vv.head()
    
    Out[40]:
  
    
       
      Name 
      DataType 
      Date 
      Data 
      Period 
      Current - Latest Period 
      Current - Prior Period 
      Current - One Year Ago 
      Current - Change Vs. Prior Period 
      Current - Change Vs. One Year Ago 
     
  
  
    
      0 
      Visitor Volume 
      integer 
      Oct-1996 
      3686143.0 
      Monthly 
      3,686,143 
      NaN 
      NaN 
      NaN 
      NaN 
     
    
      1 
      Visitor Volume 
      integer 
      Nov-1996 
      3302097.0 
      Monthly 
      3,302,097 
      3,686,143 
      NaN 
      -10% 
      NaN 
     
    
      2 
      Visitor Volume 
      integer 
      Dec-1996 
      3056143.0 
      Monthly 
      3,056,143 
      3,302,097 
      NaN 
      -7% 
      NaN 
     
    
      3 
      Visitor Volume 
      integer 
      Jan-1997 
      3377731.0 
      Monthly 
      3,377,731 
      3,056,143 
      NaN 
      11% 
      NaN 
     
    
      4 
      Visitor Volume 
      integer 
      Feb-1997 
      3340058.0 
      Monthly 
      3,340,058 
      3,377,731 
      NaN 
      -1% 
      NaN 
     
  
In [41]:
    
vv.describe(include='all')
    
    Out[41]:
  
    
       
      Name 
      DataType 
      Date 
      Data 
      Period 
      Current - Latest Period 
      Current - Prior Period 
      Current - One Year Ago 
      Current - Change Vs. Prior Period 
      Current - Change Vs. One Year Ago 
     
  
  
    
      count 
      255 
      255 
      255 
      2.530000e+02 
      255 
      255 
      252 
      243 
      252 
      243 
     
    
      unique 
      1 
      1 
      255 
      NaN 
      1 
      254 
      252 
      243 
      37 
      32 
     
    
      top 
      Visitor Volume 
      integer 
      Dec-2013 
      NaN 
      Monthly 
      n.a. 
      4,076,789 
      4,076,789 
      1% 
      1% 
     
    
      freq 
      255 
      255 
      1 
      NaN 
      255 
      2 
      1 
      1 
      20 
      30 
     
    
      mean 
      NaN 
      NaN 
      NaN 
      4.224980e+06 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
     
    
      std 
      NaN 
      NaN 
      NaN 
      4.277735e+05 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
     
    
      min 
      NaN 
      NaN 
      NaN 
      3.056143e+06 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
     
    
      25% 
      NaN 
      NaN 
      NaN 
      3.899251e+06 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
     
    
      50% 
      NaN 
      NaN 
      NaN 
      4.260492e+06 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
     
    
      75% 
      NaN 
      NaN 
      NaN 
      4.549456e+06 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
     
    
      max 
      NaN 
      NaN 
      NaN 
      5.240708e+06 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
     
  
In [47]:
    
plt.plot(vv['Data'])
plt.show()
    
    
 
In [48]:
    
# Gross Casino Gaming Revenue
gcgr = pd.read_csv('gaming_revenue.csv'); gcgr.head()
    
    Out[48]:
  
    
       
      Name 
      DataType 
      Date 
      Data 
      Period 
      Current - Latest Period 
      Current - Prior Period 
      Current - One Year Ago 
      Current - Change Vs. Prior Period 
      Current - Change Vs. One Year Ago 
     
  
  
    
      0 
      Gross Casino Gaming Revenue 
      currency 
      Apr-1983 
      241286383.0 
      Monthly 
      $241,286,383 
      NaN 
      NaN 
      NaN 
      NaN 
     
    
      1 
      Gross Casino Gaming Revenue 
      currency 
      May-1983 
      243923340.0 
      Monthly 
      $243,923,340 
      $241,286,383 
      NaN 
      1% 
      NaN 
     
    
      2 
      Gross Casino Gaming Revenue 
      currency 
      Jun-1983 
      238944420.0 
      Monthly 
      $238,944,420 
      $243,923,340 
      NaN 
      -2% 
      NaN 
     
    
      3 
      Gross Casino Gaming Revenue 
      currency 
      Jul-1983 
      277215594.0 
      Monthly 
      $277,215,594 
      $238,944,420 
      NaN 
      16% 
      NaN 
     
    
      4 
      Gross Casino Gaming Revenue 
      currency 
      Aug-1983 
      252093854.0 
      Monthly 
      $252,093,854 
      $277,215,594 
      NaN 
      -9% 
      NaN 
     
  
In [49]:
    
gcgr.describe(include='all')
    
    Out[49]:
  
    
       
      Name 
      DataType 
      Date 
      Data 
      Period 
      Current - Latest Period 
      Current - Prior Period 
      Current - One Year Ago 
      Current - Change Vs. Prior Period 
      Current - Change Vs. One Year Ago 
     
  
  
    
      count 
      422 
      422 
      422 
      4.220000e+02 
      422 
      422 
      421 
      410 
      421 
      410 
     
    
      unique 
      1 
      1 
      422 
      NaN 
      1 
      422 
      421 
      410 
      45 
      44 
     
    
      top 
      Gross Casino Gaming Revenue 
      currency 
      Dec-2013 
      NaN 
      Monthly 
      $371,380,445 
      $371,380,445 
      $371,380,445 
      -3% 
      4% 
     
    
      freq 
      422 
      422 
      1 
      NaN 
      422 
      1 
      1 
      1 
      26 
      25 
     
    
      mean 
      NaN 
      NaN 
      NaN 
      7.020014e+08 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
     
    
      std 
      NaN 
      NaN 
      NaN 
      2.524294e+08 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
     
    
      min 
      NaN 
      NaN 
      NaN 
      2.178806e+08 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
     
    
      25% 
      NaN 
      NaN 
      NaN 
      4.784285e+08 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
     
    
      50% 
      NaN 
      NaN 
      NaN 
      7.666464e+08 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
     
    
      75% 
      NaN 
      NaN 
      NaN 
      9.102001e+08 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
     
    
      max 
      NaN 
      NaN 
      NaN 
      1.165203e+09 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
      NaN 
     
  
In [46]:
    
plt.plot(gcgr['Data'])
plt.show()
    
    
 
In [ ]:
    
    
Content source: bgroveben/python3_machine_learning_projects
Similar notebooks: