The RTE describes the change of incident radiance intensity at a specific height and direction $I(z,\vec{\Omega})$.
$$ \mu\cdot\frac{\partial I(z,\vec{\Omega})}{\partial z} = \overbrace{-\kappa_{e}\cdot I(z,\vec{\Omega})}^{\textsf{Attenuation}} + \underbrace{J_{s}(z,\vec{\Omega})}_{\textsf{Volume scattering}}, $$where $\kappa_{e}=G(\vec{\Omega})/\mu$.
So...
Typically, we assume leaves to be bi-Lambertian, so simplify.... $$ \Gamma\left(\vec{\Omega}'\rightarrow\vec{\Omega}\right) = \rho_{L}\cdot\Gamma^{\uparrow}(\vec{\Omega}, \vec{\Omega}') + \tau_{L}\cdot\Gamma^{\downarrow}(\vec{\Omega}, \vec{\Omega}') $$
Also, if we assume $\rho\sim\tau$ (or a linear function), $\Gamma$ is a weighting of the upper and lower double projections of the leaf angle distribution modulated by the spectral properties of the single scattering albedo.
So the gap fraction becomes $$ \exp\left(-L\cdot C\frac{G(\Omega)}{\mu}\right) $$
We can think of the LAI of a clumped canopy as being effective if $C\neq1$
Clumping has an effect on the radiation regime inside the canopy
$\Rightarrow$ effect on GPP
Summary