In [ ]:
%matplotlib inline
In [ ]:
import numpy as np
import pandas as pd
import sklearn
from ailib.ml.datasets.binary_classification_toy_problems import gen_2d_samples
In [ ]:
from sklearn import datasets
https://keras.io/#installation
Install TensorFlow backend: https://www.tensorflow.org/install/
pip install tensorflow
Insall h5py (required if you plan on saving Keras models to disk): http://docs.h5py.org/en/latest/build.html#wheels
pip install h5py
Install pydot (used by visualization utilities to plot model graphs): https://github.com/pydot/pydot#installation
pip install pydot
pip install keras
In [ ]:
import tensorflow as tf
tf.__version__
In [ ]:
import keras
keras.__version__
In [ ]:
import h5py
h5py.__version__
In [ ]:
import pydot
pydot.__version__
In [ ]:
df_train = gen_2d_samples(n_samples=200)
x_train = df_train[['x1', 'x2']].values
y_train = df_train.y.values
ax = df_train.loc[df_train.y == 0].plot.scatter(x='x1', y='x2', color="r")
df_train.loc[df_train.y == 1].plot.scatter(x='x1', y='x2', ax=ax);
In [ ]:
df_test = gen_2d_samples(n_samples=200)
x_test = df_test[['x1', 'x2']].values
y_test = df_test.y.values
ax = df_test.loc[df_test.y == 0].plot.scatter(x='x1', y='x2', color="r")
df_test.loc[df_test.y == 1].plot.scatter(x='x1', y='x2', ax=ax);
In [ ]:
model = keras.models.Sequential()
model.add(keras.layers.Dense(units=2, activation='relu', input_dim=2))
model.add(keras.layers.Dense(units=1, activation='sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
model.summary()
In [ ]:
print(model.get_config())
In [ ]:
hist = model.fit(x_train, y_train, batch_size=100, epochs=10, verbose=False)
In [ ]:
plt.plot(hist.history['loss']);
In [ ]:
model.evaluate(x_test, y_test)
In [ ]:
y_predicted = model.predict(x_test)
In [ ]:
predicted_data = np.concatenate([x_test, y_predicted], axis=1)
predicted_df = pd.DataFrame(predicted_data, columns=['x1', 'x2', 'y'])
ax = predicted_df.loc[predicted_df.y <= 0.5].plot.scatter(x='x1', y='x2', color="r")
predicted_df.loc[predicted_df.y > 0.5].plot.scatter(x='x1', y='x2', ax=ax);
In [ ]:
from keras.utils import plot_model
plot_model(model, show_shapes=True, to_file="model.png")