In [ ]:
%matplotlib inline

In [ ]:
import numpy as np

In [ ]:
from sklearn import datasets

Keras Hello World

Install Keras

https://keras.io/#installation

Install dependencies

Install TensorFlow backend: https://www.tensorflow.org/install/

pip install tensorflow

Insall h5py (required if you plan on saving Keras models to disk): http://docs.h5py.org/en/latest/build.html#wheels

pip install h5py

Install pydot (used by visualization utilities to plot model graphs): https://github.com/pydot/pydot#installation

pip install pydot

Install Keras

pip install keras

Import packages and check versions


In [ ]:
import tensorflow as tf
tf.__version__

In [ ]:
import keras
keras.__version__

In [ ]:
import h5py
h5py.__version__

In [ ]:
import pydot
pydot.__version__

In [ ]:
from keras.models import Sequential

model = Sequential()

In [ ]:
from keras.layers import Dense

model.add(Dense(units=6, activation='relu', input_dim=4))
model.add(Dense(units=3, activation='softmax'))

In [ ]:
from keras.utils import plot_model

plot_model(model, show_shapes=True, to_file="model.png")

In [ ]:
model.compile(loss='categorical_crossentropy',
              optimizer='sgd',
              metrics=['accuracy'])

In [ ]:
iris = datasets.load_iris()

TODO: shuffle


In [ ]:
x_train = iris.data

In [ ]:
y_train = np.zeros(shape=[x_train.shape[0], 3])

In [ ]:
y_train[(iris.target == 0), 0] = 1
y_train[(iris.target == 1), 1] = 1
y_train[(iris.target == 2), 2] = 1

In [ ]:
x_test = x_train
y_test = y_train

In [ ]:
model.fit(x_train, y_train)

In [ ]:
model.evaluate(x_test, y_test)

In [ ]:
model.predict(x_test)