In [ ]:
%matplotlib inline
This example demonstrates some of the flexibility of the Excel outputs. It creates an Excel file called 'clrd.xlsx' that includes various statistics on industry development patterns for each line of business in the CAS loss reserve database.
Output can be viewed online in Google Sheets <https://docs.google.com/spreadsheets/d/1fwHK1Sys6aHDhEhFO6stVJtmZVKEcXXBsmJLSLIBLJY/edit#gid=1190415861>
_.
See Exhibits<exhibits>
for more detail.
In [ ]:
import chainladder as cl
import pandas as pd
clrd = cl.load_dataset('clrd').groupby('LOB').sum()['CumPaidLoss']
# Line of Business Dictionary for looping
lobs = dict(comauto='Commercial Auto',
medmal='Medical Malpractice',
othliab='Other Liability',
ppauto='Private Passenger Auto',
prodliab='Product Liability',
wkcomp='Workers\' Compensation')
sheets = []
for lob_abb, lob in lobs.items():
# Sample LDFs into a pandas dataframe
ldfs = pd.concat((
cl.Development(n_periods=2).fit(clrd.loc[lob_abb]).ldf_.to_frame(),
cl.Development(n_periods=3).fit(clrd.loc[lob_abb]).ldf_.to_frame(),
cl.Development(n_periods=7).fit(clrd.loc[lob_abb]).ldf_.to_frame(),
cl.Development(n_periods=10).fit(clrd.loc[lob_abb]).ldf_.to_frame(),
cl.Development().fit(clrd.loc[lob_abb]).ldf_.to_frame()))
ldfs.index = ['2 Yr Wtd', '3 Yr Wtd', '7 Yr Wtd', '10 Yr Wtd', 'Selected']
# Excel exhibit
sheets.append(
(lob,
# Layout individual sheet vertically (i.e. Column)
cl.Column(
cl.Title(['CAS Loss Reserve Database', lob, 'Cumulative Paid Loss',
'Evaluated as of December 31, 1997']),
cl.DataFrame(clrd.loc[lob_abb], index_label='Accident Year',
formats={'num_format': '#,#', 'align': 'center'}),
cl.CSpacer(),
cl.DataFrame(clrd.loc[lob_abb].link_ratio, index_label='Accident Year',
formats={'num_format': '0.000', 'align': 'center'}),
cl.CSpacer(),
cl.DataFrame(ldfs, index_label='Averages',
formats={'num_format': '0.000', 'align': 'center'})
)))
# Output to excel
cl.Tabs(*sheets).to_excel('clrd.xlsx')