In [ ]:
%matplotlib inline
%pylab inline
In [ ]:
import menpo.io as mio
from menpo.landmark import labeller, streetscene_car_view_1
from menpofast.utils import convert_from_menpo
path = '/data/'
group = 'streetscene_car_view_1'
test_images = []
for i in mio.import_images(path + 'PhD/DataBases/cars/cmu_car_data1/view1/',
verbose=True, max_images=None):
# convert the image from menpo Image to menpofast Image (channels at front)
i = convert_from_menpo(i)
labeller(i, 'PTS', eval(group))
i.crop_to_landmarks_proportion_inplace(1.5, group=group)
i = i.rescale_landmarks_to_diagonal_range(200, group=group)
if i.n_channels == 3:
i = i.as_greyscale(mode='average')
test_images.append(i)
In [ ]:
test_images = test_images[1::2]
In [ ]:
from menpo.visualize import visualize_images
visualize_images(test_images)
In [ ]:
from alabortcvpr2015.utils import pickle_load
parts_aam = pickle_load(path + 'PhD/Models/parts_aam_view2_fast_dsift')
global_aam = pickle_load(path + 'PhD/Models/global_aam_view2_fast_dsift')
clm = pickle_load(path + 'PhD/Models/clm_view2_fast_dsift')
parts_unified = pickle_load(path + 'PhD/Models/parts_unified_view2_fast_dsift')
global_unified = pickle_load(path + 'PhD/Models/global_unified_view2_fast_dsift')
In [ ]:
sampling_step = 4
sampling_mask = np.require(np.zeros(parts_aam.parts_shape), dtype=np.bool)
sampling_mask[0::sampling_step, 0::sampling_step] = True
imshow(sampling_mask)
In [ ]:
from alabortcvpr2015.aam import PartsAAMFitter, GlobalAAMFitter, AIC, PIC
from alabortcvpr2015.clm import CLMFitter
from alabortcvpr2015.unified import PartsUnifiedFitter, GlobalUnifiedFitter, AICRLMS, PICRLMS
n_shape = [3, 10]
n_appearance = [25, 50]
parts_aam_fitter_pic = PartsAAMFitter(parts_aam, algorithm_cls=PIC,
n_shape=n_shape, n_appearance=n_appearance,
sampling_mask=sampling_mask)
parts_aam_fitter_aic = PartsAAMFitter(parts_aam, algorithm_cls=AIC,
n_shape=n_shape, n_appearance=n_appearance,
sampling_mask=sampling_mask)
global_aam_fitter_pic = GlobalAAMFitter(global_aam, algorithm_cls=PIC,
n_shape=n_shape, n_appearance=n_appearance,
sampling_step=sampling_step)
global_aam_fitter_aic = GlobalAAMFitter(global_aam, algorithm_cls=AIC,
n_shape=n_shape, n_appearance=n_appearance,
sampling_step=sampling_step)
clm_fitter = CLMFitter(clm, n_shape=n_shape)
parts_unified_fitter_pic = PartsUnifiedFitter(parts_unified, algorithm_cls=PICRLMS,
n_shape=n_shape, n_appearance=n_appearance,
sampling_mask=sampling_mask)
parts_unified_fitter_aic = PartsUnifiedFitter(parts_unified, algorithm_cls=AICRLMS,
n_shape=n_shape, n_appearance=n_appearance,
sampling_mask=sampling_mask)
global_unified_fitter_pic = GlobalUnifiedFitter(global_unified, algorithm_cls=PICRLMS,
n_shape=n_shape, n_appearance=n_appearance,
sampling_step=sampling_step)
global_unified_fitter_aic = GlobalUnifiedFitter(global_unified, algorithm_cls=AICRLMS,
n_shape=n_shape, n_appearance=n_appearance,
sampling_step=sampling_step)
In [ ]:
fitters = [#parts_aam_fitter_pic, parts_aam_fitter_aic,
global_aam_fitter_pic, global_aam_fitter_aic,
clm_fitter,
#parts_unified_fitter_pic, parts_unified_fitter_aic,
global_unified_fitter_pic, global_unified_fitter_aic]
In [ ]:
repeat = 1
results = [[], [], [], [], []]
for seed in xrange(repeat):
np.random.seed(seed=seed)
for j, i in enumerate(test_images):
gt_s = i.landmarks[group].lms
s = fitters[0].perturb_shape(gt_s, noise_std=0.05)
for k, fitter in enumerate(fitters[-2:]):
fr = fitter.fit(i, s, gt_shape=gt_s, max_iters=20, prior=False, a=0.7)
results[k].append(fr)
fr.downscale = 0.5
print 'Image: ', j
print fr
In [ ]:
initial_errors = [fr.initial_error() for fr in results[0]]
final_errors = []
for fitter_results in results:
final_errors.append([fr.final_error() for fr in fitter_results])
errors = [initial_errors] + final_errors
In [ ]:
from menpofit.visualize import plot_ced
legend_entries = ['Initial',
#'Parts-AAM-PIC',
#'Parts-AAM-AIC',
'Global-AAM-PIC',
'Global-AAM-AIC',
'CLM-RLMS',
#'Parts-UNI-PIC-RLMS',
#'Parts-UNI-AIC-RLMS',
'Global-UNI-PIC-RLMS',
'Global-UNI-AIC-RLMS']
plot_ced(errors, legend_entries=legend_entries)
In [ ]:
from menpofit.visualize import visualize_fitting_results
visualize_fitting_results(results[0], color='r', linewidth=2)
In [ ]:
for (fitter, entry) in zip(fitters, legend_entries[1:]):
print entry, ': '
%time fitter.fit(i, s, gt_shape=gt_s, max_iters=20, prior=False)
print
In [ ]: