In [1]:
import theano
import theano.tensor as th
import numpy as np
import math
In [2]:
import sys
sys.path.append('..')
In [3]:
import rnn.theano.model
import rnn.theano.lstm
import rnn.theano.crossent
import rnn.theano.solvers
import rnn.theano.softmax
from rnn.initializers import orthogonal
reload(rnn.theano.lstm)
reload(rnn.theano.model)
reload(rnn.theano.crossent)
reload(rnn.theano.solvers)
reload(rnn.theano.softmax)
Out[3]:
<module 'rnn.theano.softmax' from '../rnn/theano/softmax.pyc'>
In [4]:
n = 4
In [5]:
x = th.imatrix()
y = th.imatrix()
k,b = x.shape
lstm_units = 100
#s0 = th.matrix()
lstm = rnn.theano.lstm.LSTM(n, lstm_units)
y0 = th.zeros((b, lstm_units))
c0 = th.zeros((b, lstm_units))
lstm_out, _ = lstm.scanl(y0, c0, x)
wlin = np.random.randn(lstm_units+1, n).astype(theano.config.floatX)
wlin[0] = 0
orthogonal(wlin[1:])
wlin = theano.shared(wlin)
lin_out = th.dot(lstm_out.reshape((k*b,lstm_units)), wlin[1:]) + wlin[0]
lin_out = lin_out.reshape((k,b,n))
yh = rnn.theano.softmax.softmax(lin_out)
#print theano.printing.debugprint(yh)
err = th.sum(rnn.theano.crossent.crossent(yh, y))
acc = th.sum(th.eq(th.argmax(yh, axis=2), y))
count = y.size
solver = rnn.theano.solvers.RMSprop(0.01, decay=rnn.theano.solvers.GeomDecay(0.995))
model = rnn.theano.model.Model([lstm.weights, wlin], yh, x, y
, err, acc, count, solver=solver)
In [6]:
class Minibatch(object):
def __init__(self, data, size=256):
self.data = data
self.size = size
def __len__(self):
return int(math.ceil(len(self.data)/float(self.size)))
def __iter__(self):
n = len(self.data)
p = np.random.permutation(n)
for i in xrange(0, n, self.size):
yield self.data[i:i+self.size]
class Loader(object):
def __init__(self, data):
self.data = data
def __len__(self):
if np.issubdtype(self.data.dtype, int):
return self.data.shape[-1]
return self.data.shape[-2]
def __getitem__(self, i):
return self.data[:-1,i], self.data[1:,i]
In [7]:
length, samples = 200, 100
batches = 20
D = np.random.randint(0, n, (length,samples)).astype(np.int32)
D = Minibatch(Loader(D), size=batches)
In [8]:
len(D)
Out[8]:
5
In [9]:
from rnn.progress import progress_bar
max_iters = 500
err_ = 0
acc_ = 0
n_ = 0
bar = progress_bar()
next(bar)
for iters, (err,acc,n) in model.fit(D):
h = '{}/{}:'.format(int(iters), max_iters)
p = iters % 1
err_ += err
acc_ += acc
n_ += n
bar.send((h, p, {'error':err_/n_, 'accurracy':float(acc_)/n_}))
if iters >= max_iters:
break
if p == 0:
err_, acc_, n_ = 0, 0, 0
0/500: accurracy=0.241959798995, error=1.38738941333
[######## ] 20.00%, eta 00:00:51
1/500: accurracy=0.246633165829, error=1.39067024446
2/500: accurracy=0.247135678392, error=1.3881992384
3/500: accurracy=0.250854271357, error=1.38817646735
4/500: accurracy=0.256633165829, error=1.38625875004
5/500: accurracy=0.257989949749, error=1.38627093905
6/500: accurracy=0.260150753769, error=1.38569260436
7/500: accurracy=0.261557788945, error=1.38579801091
8/500: accurracy=0.259748743719, error=1.38552693395
9/500: accurracy=0.26216080402, error=1.38553130353
10/500: accurracy=0.260904522613, error=1.3853778538
11/500: accurracy=0.266783919598, error=1.38524255638
12/500: accurracy=0.266030150754, error=1.38491690142
13/500: accurracy=0.263969849246, error=1.38467380411
14/500: accurracy=0.263969849246, error=1.38465702191
15/500: accurracy=0.259396984925, error=1.3861265225
16/500: accurracy=0.26351758794, error=1.38506250273
17/500: accurracy=0.264371859296, error=1.38491095583
18/500: accurracy=0.271608040201, error=1.38414124415
19/500: accurracy=0.269698492462, error=1.38329674913
20/500: accurracy=0.275628140704, error=1.38233919456
21/500: accurracy=0.27527638191, error=1.38230733861
22/500: accurracy=0.276834170854, error=1.38161591472
23/500: accurracy=0.281055276382, error=1.38137250607
24/500: accurracy=0.280201005025, error=1.38095624419
25/500: accurracy=0.281507537688, error=1.38181258093
26/500: accurracy=0.279899497487, error=1.38146324897
27/500: accurracy=0.283115577889, error=1.38025573488
28/500: accurracy=0.287688442211, error=1.37841607299
29/500: accurracy=0.288894472362, error=1.37773296326
30/500: accurracy=0.286934673367, error=1.37865704825
31/500: accurracy=0.29256281407, error=1.3765199142
32/500: accurracy=0.288040201005, error=1.37506439424
33/500: accurracy=0.298743718593, error=1.37256153683
34/500: accurracy=0.29783919598, error=1.37054170882
35/500: accurracy=0.303819095477, error=1.3691495017
36/500: accurracy=0.30783919598, error=1.36621397458
37/500: accurracy=0.314371859296, error=1.36386268634
38/500: accurracy=0.311809045226, error=1.36549436288
39/500: accurracy=0.313417085427, error=1.36306328854
40/500: accurracy=0.313718592965, error=1.36273996261
41/500: accurracy=0.317487437186, error=1.35939745503
42/500: accurracy=0.321859296482, error=1.35693995467
43/500: accurracy=0.326884422111, error=1.35468197027
44/500: accurracy=0.327135678392, error=1.35466289175
45/500: accurracy=0.329095477387, error=1.35071170495
46/500: accurracy=0.339949748744, error=1.3441932179
47/500: accurracy=0.346432160804, error=1.33981559034
48/500: accurracy=0.349396984925, error=1.33726443221
49/500: accurracy=0.343316582915, error=1.34205192981
50/500: accurracy=0.341959798995, error=1.34196725613
51/500: accurracy=0.343115577889, error=1.33933881898
52/500: accurracy=0.352261306533, error=1.33298521253
53/500: accurracy=0.355728643216, error=1.32601389585
54/500: accurracy=0.358140703518, error=1.32355764546
55/500: accurracy=0.364773869347, error=1.32079895117
56/500: accurracy=0.370201005025, error=1.31648010362
57/500: accurracy=0.370150753769, error=1.31430347775
58/500: accurracy=0.375075376884, error=1.30834918418
59/500: accurracy=0.379296482412, error=1.30408548098
60/500: accurracy=0.383819095477, error=1.30105005995
61/500: accurracy=0.386532663317, error=1.29702062035
62/500: accurracy=0.379798994975, error=1.30136951305
63/500: accurracy=0.384020100503, error=1.2983791407
64/500: accurracy=0.391608040201, error=1.29422274736
65/500: accurracy=0.394070351759, error=1.28899245755
66/500: accurracy=0.401859296482, error=1.28279274865
67/500: accurracy=0.402010050251, error=1.27895638319
68/500: accurracy=0.404170854271, error=1.28055965947
69/500: accurracy=0.404522613065, error=1.27661091596
70/500: accurracy=0.404974874372, error=1.27615874444
71/500: accurracy=0.411306532663, error=1.26701089956
72/500: accurracy=0.413015075377, error=1.26745401693
73/500: accurracy=0.414874371859, error=1.26196908533
74/500: accurracy=0.419748743719, error=1.25486083574
75/500: accurracy=0.428090452261, error=1.25106964058
76/500: accurracy=0.422964824121, error=1.24895261054
77/500: accurracy=0.425979899497, error=1.2491127038
78/500: accurracy=0.434221105528, error=1.23962340756
79/500: accurracy=0.437587939698, error=1.23261949076
80/500: accurracy=0.433216080402, error=1.23518392891
81/500: accurracy=0.432010050251, error=1.23657396441
82/500: accurracy=0.438442211055, error=1.23725483032
83/500: accurracy=0.440100502513, error=1.23147775934
84/500: accurracy=0.445728643216, error=1.22318470191
85/500: accurracy=0.450904522613, error=1.21576941728
86/500: accurracy=0.449748743719, error=1.21347395236
87/500: accurracy=0.452964824121, error=1.21158980755
88/500: accurracy=0.454271356784, error=1.2121083485
89/500: accurracy=0.455025125628, error=1.21063305629
90/500: accurracy=0.458743718593, error=1.2049251882
91/500: accurracy=0.461105527638, error=1.19953460705
92/500: accurracy=0.460603015075, error=1.19743272672
93/500: accurracy=0.467537688442, error=1.1929887165
94/500: accurracy=0.470100502513, error=1.19056479805
95/500: accurracy=0.471608040201, error=1.18417807236
96/500: accurracy=0.470954773869, error=1.18180110763
97/500: accurracy=0.481055276382, error=1.17415143446
98/500: accurracy=0.480653266332, error=1.16846568206
99/500: accurracy=0.484271356784, error=1.16817771436
100/500: accurracy=0.480904522613, error=1.1737953748
101/500: accurracy=0.475075376884, error=1.17638042851
102/500: accurracy=0.469346733668, error=1.18372359727
103/500: accurracy=0.478291457286, error=1.18011133275
104/500: accurracy=0.482261306533, error=1.16471270732
105/500: accurracy=0.489095477387, error=1.15547578989
106/500: accurracy=0.490050251256, error=1.15163757978
107/500: accurracy=0.49527638191, error=1.14811009793
108/500: accurracy=0.495477386935, error=1.14387553983
109/500: accurracy=0.503869346734, error=1.13240715064
110/500: accurracy=0.504221105528, error=1.13273878997
111/500: accurracy=0.504371859296, error=1.13350734298
112/500: accurracy=0.50432160804, error=1.13286952681
113/500: accurracy=0.498793969849, error=1.13460266437
114/500: accurracy=0.497587939698, error=1.13987789066
115/500: accurracy=0.497035175879, error=1.14082686309
116/500: accurracy=0.501155778894, error=1.13439405939
117/500: accurracy=0.504271356784, error=1.12646039232
118/500: accurracy=0.517638190955, error=1.11032715042
119/500: accurracy=0.521005025126, error=1.10343986833
120/500: accurracy=0.520502512563, error=1.10241393272
121/500: accurracy=0.525778894472, error=1.09981969187
122/500: accurracy=0.521055276382, error=1.10043961521
123/500: accurracy=0.522713567839, error=1.09460155864
124/500: accurracy=0.529296482412, error=1.0877048403
125/500: accurracy=0.528944723618, error=1.0892938038
126/500: accurracy=0.52783919598, error=1.0890202376
127/500: accurracy=0.533165829146, error=1.0819935135
128/500: accurracy=0.534221105528, error=1.07733578626
129/500: accurracy=0.536231155779, error=1.07222459293
130/500: accurracy=0.538944723618, error=1.0728979873
131/500: accurracy=0.535577889447, error=1.08040968119
132/500: accurracy=0.532613065327, error=1.0818984344
133/500: accurracy=0.536934673367, error=1.07165434092
134/500: accurracy=0.544170854271, error=1.06418691584
135/500: accurracy=0.548190954774, error=1.05760321376
136/500: accurracy=0.544371859296, error=1.06098653959
137/500: accurracy=0.551507537688, error=1.0479989215
138/500: accurracy=0.561457286432, error=1.03825571031
139/500: accurracy=0.558291457286, error=1.0347525222
140/500: accurracy=0.562613065327, error=1.03189024249
141/500: accurracy=0.559698492462, error=1.03501679797
142/500: accurracy=0.562964824121, error=1.0339459345
143/500: accurracy=0.557135678392, error=1.04361943066
144/500: accurracy=0.553115577889, error=1.04600226223
145/500: accurracy=0.553115577889, error=1.04752833892
146/500: accurracy=0.559095477387, error=1.03613083177
147/500: accurracy=0.562010050251, error=1.02482883254
148/500: accurracy=0.569095477387, error=1.01965593163
149/500: accurracy=0.577889447236, error=1.00496756151
150/500: accurracy=0.580452261307, error=0.999589810295
151/500: accurracy=0.583065326633, error=0.996200877612
152/500: accurracy=0.58216080402, error=0.997872415903
153/500: accurracy=0.576231155779, error=1.00630325219
154/500: accurracy=0.571959798995, error=1.01234418138
155/500: accurracy=0.578090452261, error=1.00830708693
156/500: accurracy=0.576834170854, error=1.00358298858
157/500: accurracy=0.575829145729, error=1.00247188831
158/500: accurracy=0.582010050251, error=0.996603369024
159/500: accurracy=0.580201005025, error=0.992123782031
160/500: accurracy=0.586683417085, error=0.984015608061
161/500: accurracy=0.594472361809, error=0.976553899626
162/500: accurracy=0.597135678392, error=0.972659677249
163/500: accurracy=0.598040201005, error=0.967932214598
164/500: accurracy=0.600251256281, error=0.965076395675
165/500: accurracy=0.597939698492, error=0.966474761174
166/500: accurracy=0.589899497487, error=0.97808037449
167/500: accurracy=0.580452261307, error=0.99295250539
168/500: accurracy=0.579346733668, error=0.995466496524
169/500: accurracy=0.59040201005, error=0.980609079904
170/500: accurracy=0.595778894472, error=0.969692415005
171/500: accurracy=0.598291457286, error=0.962558029798
172/500: accurracy=0.598542713568, error=0.958808763869
173/500: accurracy=0.607286432161, error=0.951580897009
174/500: accurracy=0.609246231156, error=0.94291820526
175/500: accurracy=0.61432160804, error=0.937085827097
176/500: accurracy=0.616582914573, error=0.932836807402
177/500: accurracy=0.61959798995, error=0.932437522611
178/500: accurracy=0.612211055276, error=0.937331578881
179/500: accurracy=0.614020100503, error=0.936091980906
180/500: accurracy=0.613718592965, error=0.934074230747
181/500: accurracy=0.620502512563, error=0.927021941225
182/500: accurracy=0.614371859296, error=0.929822699171
183/500: accurracy=0.61391959799, error=0.932191244551
184/500: accurracy=0.609296482412, error=0.934525715898
185/500: accurracy=0.612261306533, error=0.928983699279
186/500: accurracy=0.616783919598, error=0.92342378478
187/500: accurracy=0.62432160804, error=0.913378646529
188/500: accurracy=0.627035175879, error=0.910636608874
189/500: accurracy=0.620703517588, error=0.912929084153
190/500: accurracy=0.625527638191, error=0.909371599909
191/500: accurracy=0.622311557789, error=0.915720640222
192/500: accurracy=0.613768844221, error=0.920714563159
193/500: accurracy=0.621507537688, error=0.913038160416
194/500: accurracy=0.628492462312, error=0.901704778946
195/500: accurracy=0.631708542714, error=0.894165263761
196/500: accurracy=0.637336683417, error=0.88899899567
197/500: accurracy=0.63824120603, error=0.887832007116
198/500: accurracy=0.638291457286, error=0.884897917151
199/500: accurracy=0.640954773869, error=0.882774059314
200/500: accurracy=0.636884422111, error=0.889045918697
201/500: accurracy=0.628140703518, error=0.899252409332
202/500: accurracy=0.634070351759, error=0.895377135562
203/500: accurracy=0.631557788945, error=0.892494909897
204/500: accurracy=0.637487437186, error=0.887005894549
205/500: accurracy=0.641608040201, error=0.876223060586
206/500: accurracy=0.64527638191, error=0.870899068695
207/500: accurracy=0.651507537688, error=0.865610852206
208/500: accurracy=0.650753768844, error=0.86193901415
209/500: accurracy=0.651708542714, error=0.860009622176
210/500: accurracy=0.651055276382, error=0.860038252923
211/500: accurracy=0.648743718593, error=0.85785523441
212/500: accurracy=0.652211055276, error=0.85829200867
213/500: accurracy=0.651155778894, error=0.861535810865
214/500: accurracy=0.646331658291, error=0.871103874501
215/500: accurracy=0.642010050251, error=0.873025150151
216/500: accurracy=0.644070351759, error=0.870184104277
217/500: accurracy=0.646180904523, error=0.868861428915
218/500: accurracy=0.649748743719, error=0.858546341723
219/500: accurracy=0.652914572864, error=0.851774016519
220/500: accurracy=0.661306532663, error=0.840868524713
221/500: accurracy=0.665226130653, error=0.834376750414
222/500: accurracy=0.668743718593, error=0.827345145786
223/500: accurracy=0.670804020101, error=0.820766316968
224/500: accurracy=0.673567839196, error=0.818624350298
225/500: accurracy=0.672864321608, error=0.817096939851
226/500: accurracy=0.673165829146, error=0.820177946803
227/500: accurracy=0.655628140704, error=0.843458049234
228/500: accurracy=0.651206030151, error=0.858115941203
229/500: accurracy=0.652512562814, error=0.855283172011
230/500: accurracy=0.655427135678, error=0.839673977306
231/500: accurracy=0.664673366834, error=0.830902311257
232/500: accurracy=0.671105527638, error=0.818823224006
233/500: accurracy=0.677587939698, error=0.807520307919
234/500: accurracy=0.682211055276, error=0.800387663701
235/500: accurracy=0.684221105528, error=0.798253731729
236/500: accurracy=0.671809045226, error=0.81762808918
237/500: accurracy=0.666432160804, error=0.827025729553
238/500: accurracy=0.668040201005, error=0.823191390019
239/500: accurracy=0.675879396985, error=0.81035602957
240/500: accurracy=0.679648241206, error=0.802581345606
241/500: accurracy=0.683417085427, error=0.802618761668
242/500: accurracy=0.682663316583, error=0.797536929973
243/500: accurracy=0.686281407035, error=0.794934038911
244/500: accurracy=0.688391959799, error=0.788730354956
245/500: accurracy=0.687989949749, error=0.787352507726
246/500: accurracy=0.687788944724, error=0.786125218958
247/500: accurracy=0.689396984925, error=0.78332557567
248/500: accurracy=0.684673366834, error=0.789899235828
249/500: accurracy=0.684170854271, error=0.793337834021
250/500: accurracy=0.684371859296, error=0.791101048393
251/500: accurracy=0.68783919598, error=0.784889808235
252/500: accurracy=0.689296482412, error=0.782539225209
253/500: accurracy=0.690050251256, error=0.777814702107
254/500: accurracy=0.695829145729, error=0.77154892934
255/500: accurracy=0.696030150754, error=0.766161532399
256/500: accurracy=0.696582914573, error=0.767882680537
257/500: accurracy=0.696984924623, error=0.770565450974
258/500: accurracy=0.692311557789, error=0.777087945293
259/500: accurracy=0.686984924623, error=0.781339598679
260/500: accurracy=0.693618090452, error=0.772576292504
261/500: accurracy=0.696984924623, error=0.769268190778
262/500: accurracy=0.699447236181, error=0.766899050289
263/500: accurracy=0.700301507538, error=0.762429084918
264/500: accurracy=0.698944723618, error=0.758861379622
265/500: accurracy=0.703065326633, error=0.755769963803
266/500: accurracy=0.702412060302, error=0.75107008282
267/500: accurracy=0.708492462312, error=0.746954657325
268/500: accurracy=0.705829145729, error=0.747284427243
269/500: accurracy=0.71040201005, error=0.740864567249
270/500: accurracy=0.712713567839, error=0.737316842808
271/500: accurracy=0.712713567839, error=0.742242695991
272/500: accurracy=0.703969849246, error=0.751786878163
273/500: accurracy=0.699145728643, error=0.761776944389
274/500: accurracy=0.699698492462, error=0.759726344131
275/500: accurracy=0.701005025126, error=0.756188423615
276/500: accurracy=0.702412060302, error=0.75558296101
277/500: accurracy=0.70959798995, error=0.74464379928
278/500: accurracy=0.715728643216, error=0.736680729984
279/500: accurracy=0.713969849246, error=0.730287868372
280/500: accurracy=0.721105527638, error=0.72290675987
281/500: accurracy=0.719296482412, error=0.72163101112
282/500: accurracy=0.720150753769, error=0.722572604899
283/500: accurracy=0.722211055276, error=0.719571825469
284/500: accurracy=0.717537688442, error=0.721515748999
285/500: accurracy=0.721306532663, error=0.723431853722
286/500: accurracy=0.718140703518, error=0.72627970029
287/500: accurracy=0.718040201005, error=0.725859393667
288/500: accurracy=0.717537688442, error=0.721170506963
289/500: accurracy=0.717336683417, error=0.723006636188
290/500: accurracy=0.717939698492, error=0.726284458348
291/500: accurracy=0.716030150754, error=0.725108315979
292/500: accurracy=0.71743718593, error=0.71736972709
293/500: accurracy=0.726834170854, error=0.711089331995
294/500: accurracy=0.72472361809, error=0.707744595489
295/500: accurracy=0.732060301508, error=0.704632429306
296/500: accurracy=0.726281407035, error=0.702977285028
297/500: accurracy=0.734824120603, error=0.697511194219
298/500: accurracy=0.732110552764, error=0.696331760884
299/500: accurracy=0.734422110553, error=0.697136936858
300/500: accurracy=0.730251256281, error=0.699121766306
301/500: accurracy=0.727135678392, error=0.703590233116
302/500: accurracy=0.725326633166, error=0.707648327633
303/500: accurracy=0.727487437186, error=0.705396981806
304/500: accurracy=0.723567839196, error=0.705295446478
305/500: accurracy=0.729396984925, error=0.700906260244
306/500: accurracy=0.726281407035, error=0.704178682973
307/500: accurracy=0.730954773869, error=0.69484403258
308/500: accurracy=0.732864321608, error=0.693321550506
309/500: accurracy=0.736030150754, error=0.688091951041
310/500: accurracy=0.740301507538, error=0.68410689806
311/500: accurracy=0.739145728643, error=0.683550664621
312/500: accurracy=0.745376884422, error=0.676357499141
313/500: accurracy=0.746683417085, error=0.672362718494
314/500: accurracy=0.746834170854, error=0.671588622893
315/500: accurracy=0.748994974874, error=0.6681163504
316/500: accurracy=0.746683417085, error=0.669185171513
317/500: accurracy=0.745075376884, error=0.669146221038
318/500: accurracy=0.742914572864, error=0.672371842257
319/500: accurracy=0.742613065327, error=0.679348966624
320/500: accurracy=0.73216080402, error=0.690158760621
321/500: accurracy=0.729447236181, error=0.696990991775
322/500: accurracy=0.731206030151, error=0.695115214473
323/500: accurracy=0.737788944724, error=0.684092437626
324/500: accurracy=0.744120603015, error=0.671156681335
325/500: accurracy=0.747638190955, error=0.665880317098
326/500: accurracy=0.753467336683, error=0.660022335653
327/500: accurracy=0.751306532663, error=0.660167657936
328/500: accurracy=0.752311557789, error=0.658725956648
329/500: accurracy=0.755326633166, error=0.657373372348
330/500: accurracy=0.753216080402, error=0.657939337199
331/500: accurracy=0.748894472362, error=0.661621234664
332/500: accurracy=0.746381909548, error=0.664399870109
333/500: accurracy=0.749346733668, error=0.661993339318
334/500: accurracy=0.747185929648, error=0.666315759251
335/500: accurracy=0.744120603015, error=0.668221819931
336/500: accurracy=0.746683417085, error=0.665845468423
337/500: accurracy=0.747085427136, error=0.663341512842
338/500: accurracy=0.748793969849, error=0.658110249462
339/500: accurracy=0.749497487437, error=0.657546559598
340/500: accurracy=0.754221105528, error=0.651641160011
341/500: accurracy=0.758291457286, error=0.644722287765
342/500: accurracy=0.762814070352, error=0.638707233802
343/500: accurracy=0.76391959799, error=0.636480015504
344/500: accurracy=0.765577889447, error=0.633739495382
345/500: accurracy=0.77040201005, error=0.631661974346
346/500: accurracy=0.767487437186, error=0.635399443586
347/500: accurracy=0.755879396985, error=0.644942787297
348/500: accurracy=0.756783919598, error=0.64729135708
349/500: accurracy=0.75608040201, error=0.643222367194
350/500: accurracy=0.758190954774, error=0.641828879621
351/500: accurracy=0.757587939698, error=0.643326660422
352/500: accurracy=0.758693467337, error=0.638994720386
353/500: accurracy=0.759296482412, error=0.637763083045
354/500: accurracy=0.763417085427, error=0.636196010313
355/500: accurracy=0.759447236181, error=0.634483770214
356/500: accurracy=0.767487437186, error=0.628290752101
357/500: accurracy=0.769849246231, error=0.627147994197
358/500: accurracy=0.768442211055, error=0.626776010923
359/500: accurracy=0.770201005025, error=0.625008051151
360/500: accurracy=0.770150753769, error=0.624893862214
361/500: accurracy=0.767989949749, error=0.620628232592
362/500: accurracy=0.770954773869, error=0.618962335524
363/500: accurracy=0.770502512563, error=0.620388539471
364/500: accurracy=0.772462311558, error=0.618688651083
365/500: accurracy=0.767386934673, error=0.622710907675
366/500: accurracy=0.765376884422, error=0.626322969094
367/500: accurracy=0.766733668342, error=0.624990929783
368/500: accurracy=0.77040201005, error=0.622735971228
369/500: accurracy=0.760904522613, error=0.628407126769
370/500: accurracy=0.765477386935, error=0.630197679158
371/500: accurracy=0.765879396985, error=0.623591523035
372/500: accurracy=0.77648241206, error=0.613367608349
373/500: accurracy=0.778844221106, error=0.608096936273
374/500: accurracy=0.783216080402, error=0.603918808287
375/500: accurracy=0.787236180905, error=0.601379694581
376/500: accurracy=0.784522613065, error=0.599719823105
377/500: accurracy=0.780653266332, error=0.602017334065
378/500: accurracy=0.779798994975, error=0.60759754317
379/500: accurracy=0.772110552764, error=0.612309992218
380/500: accurracy=0.77391959799, error=0.612884324933
381/500: accurracy=0.775879396985, error=0.61167273907
382/500: accurracy=0.775477386935, error=0.606809109117
383/500: accurracy=0.780703517588, error=0.600837305112
384/500: accurracy=0.785025125628, error=0.595457442035
385/500: accurracy=0.786130653266, error=0.590845001444
386/500: accurracy=0.791055276382, error=0.589262852024
387/500: accurracy=0.792512562814, error=0.586340984907
388/500: accurracy=0.792462311558, error=0.585845270201
389/500: accurracy=0.790653266332, error=0.587218882537
390/500: accurracy=0.787638190955, error=0.58995371421
391/500: accurracy=0.787386934673, error=0.593029807981
392/500: accurracy=0.782110552764, error=0.598837042798
393/500: accurracy=0.780150753769, error=0.597355925615
394/500: accurracy=0.782060301508, error=0.59625741706
395/500: accurracy=0.784522613065, error=0.595293915392
396/500: accurracy=0.786582914573, error=0.588245193445
397/500: accurracy=0.788190954774, error=0.586648161766
398/500: accurracy=0.788341708543, error=0.586062291711
399/500: accurracy=0.788693467337, error=0.585363467809
400/500: accurracy=0.78743718593, error=0.585420903821
401/500: accurracy=0.789095477387, error=0.583707996601
402/500: accurracy=0.787185929648, error=0.583332188984
403/500: accurracy=0.790502512563, error=0.584505752782
404/500: accurracy=0.785527638191, error=0.58492496525
405/500: accurracy=0.793115577889, error=0.581863297027
406/500: accurracy=0.795577889447, error=0.576359083314
407/500: accurracy=0.795929648241, error=0.573572065931
408/500: accurracy=0.794974874372, error=0.574593220351
409/500: accurracy=0.79648241206, error=0.575726168882
410/500: accurracy=0.795025125628, error=0.574412542511
411/500: accurracy=0.795226130653, error=0.571906793074
412/500: accurracy=0.795376884422, error=0.572914148229
413/500: accurracy=0.794070351759, error=0.573926593673
414/500: accurracy=0.796984924623, error=0.570717681356
415/500: accurracy=0.794824120603, error=0.568380627131
416/500: accurracy=0.795376884422, error=0.568767633835
417/500: accurracy=0.798592964824, error=0.569927212661
418/500: accurracy=0.798090452261, error=0.56940793106
419/500: accurracy=0.798894472362, error=0.568834797594
420/500: accurracy=0.797135678392, error=0.56692466918
421/500: accurracy=0.795527638191, error=0.565581788506
422/500: accurracy=0.79824120603, error=0.564911563362
423/500: accurracy=0.797989949749, error=0.563360935959
424/500: accurracy=0.798291457286, error=0.563345081832
425/500: accurracy=0.80391959799, error=0.562045839721
426/500: accurracy=0.803969849246, error=0.557971554434
427/500: accurracy=0.806130653266, error=0.55594087521
428/500: accurracy=0.802110552764, error=0.558913134703
429/500: accurracy=0.798793969849, error=0.562137665331
430/500: accurracy=0.802211055276, error=0.560041330646
431/500: accurracy=0.799648241206, error=0.560578666456
432/500: accurracy=0.801306532663, error=0.559071781426
433/500: accurracy=0.806030150754, error=0.555365109589
434/500: accurracy=0.806130653266, error=0.552167464588
435/500: accurracy=0.809648241206, error=0.547681315265
436/500: accurracy=0.813165829146, error=0.544951534582
437/500: accurracy=0.810050251256, error=0.546048836983
438/500: accurracy=0.811105527638, error=0.545667062238
439/500: accurracy=0.809497487437, error=0.546498880125
440/500: accurracy=0.806582914573, error=0.549525072573
441/500: accurracy=0.807336683417, error=0.550835757883
442/500: accurracy=0.801457286432, error=0.556212088205
443/500: accurracy=0.797085427136, error=0.560686892825
444/500: accurracy=0.804120603015, error=0.555043447847
445/500: accurracy=0.805577889447, error=0.550209623818
446/500: accurracy=0.811055276382, error=0.544360823854
447/500: accurracy=0.811809045226, error=0.540220209458
448/500: accurracy=0.814773869347, error=0.539221598899
449/500: accurracy=0.813618090452, error=0.539115897142
450/500: accurracy=0.812814070352, error=0.539952259972
450/500: accurracy=0.809547738693, error=0.545520301173
[################################ ] 80.00%, eta 00:00:00
451/500: accurracy=0.808994974874, error=0.543827718333
451/500: accurracy=0.806595477387, error=0.54739207881
[################################ ] 80.00%, eta 00:00:00
452/500: accurracy=0.808291457286, error=0.544266104497
452/500: accurracy=0.809924623116, error=0.546143317696
[################################ ] 80.00%, eta 00:00:00
453/500: accurracy=0.811557788945, error=0.542986190806
454/500: accurracy=0.808693467337, error=0.543859105322
455/500: accurracy=0.815879396985, error=0.536808570904
456/500: accurracy=0.81648241206, error=0.533208131634
457/500: accurracy=0.815125628141, error=0.5332328414
458/500: accurracy=0.816834170854, error=0.531583214307
459/500: accurracy=0.818944723618, error=0.530656972526
460/500: accurracy=0.819195979899, error=0.531753062388
461/500: accurracy=0.814422110553, error=0.534378886768
462/500: accurracy=0.814824120603, error=0.53608812982
463/500: accurracy=0.807688442211, error=0.538701912396
464/500: accurracy=0.814522613065, error=0.538171805784
465/500: accurracy=0.809798994975, error=0.538013010318
466/500: accurracy=0.813467336683, error=0.537520458494
467/500: accurracy=0.812864321608, error=0.536678347739
468/500: accurracy=0.815929648241, error=0.533053937096
469/500: accurracy=0.818894472362, error=0.529726231936
470/500: accurracy=0.821557788945, error=0.525890785622
471/500: accurracy=0.819145728643, error=0.523914946019
472/500: accurracy=0.82, error=0.525421393415
473/500: accurracy=0.821105527638, error=0.524985028876
474/500: accurracy=0.82391959799, error=0.522182961705
475/500: accurracy=0.824020100503, error=0.52006658912
476/500: accurracy=0.823969849246, error=0.519238944702
477/500: accurracy=0.823969849246, error=0.519543770026
478/500: accurracy=0.824773869347, error=0.521020347865
479/500: accurracy=0.816633165829, error=0.527997791315
480/500: accurracy=0.816331658291, error=0.52584392501
481/500: accurracy=0.814974874372, error=0.529753855074
482/500: accurracy=0.816532663317, error=0.52705292146
483/500: accurracy=0.819045226131, error=0.524838568956
484/500: accurracy=0.818040201005, error=0.525621707167
485/500: accurracy=0.819949748744, error=0.521336998959
486/500: accurracy=0.827989949749, error=0.513980115964
487/500: accurracy=0.829547738693, error=0.510540838072
488/500: accurracy=0.830351758794, error=0.510462088017
489/500: accurracy=0.828442211055, error=0.51096536258
490/500: accurracy=0.828542713568, error=0.512088793507
491/500: accurracy=0.828542713568, error=0.512627163575
492/500: accurracy=0.826633165829, error=0.513171017145
493/500: accurracy=0.82864321608, error=0.512170132534
494/500: accurracy=0.826381909548, error=0.512776867457
495/500: accurracy=0.828592964824, error=0.510052850827
496/500: accurracy=0.828090452261, error=0.509873539773
497/500: accurracy=0.830703517588, error=0.509270274762
498/500: accurracy=0.828190954774, error=0.508573435046
499/500: accurracy=0.831658291457, error=0.507237002467
500/500: accurracy=0.829045226131, error=0.509276403663
In [ ]:
In [ ]:
In [ ]:
Content source: tbepler/rnn
Similar notebooks: