Fetching data from CO-OPS SOS with Python tools

Pyoos is a high level data collection library for met/ocean data publicly available through many different websites and webservices.

In this post we will use pyoos to find and download data from the Center for Operational Oceanographic Products and Services (CO-OPS) using OGC's SOS.

First we have to define a time span. Here we will fetch data during the hurricane Matthew passage over the southeast states from 2016-10-05 to 2016-10-12.


In [1]:
from datetime import datetime, timedelta

event_date = datetime(2016, 10, 9)

start_time = event_date - timedelta(days=4)
end_time = event_date + timedelta(days=3)

The geographical bounding box includes all the states in the SECOORA region: Florida, Georgia, South and North Carolina.

The variable of choice is sea level and we will convert any elevation units to meters.


In [2]:
import cf_units

units = cf_units.Unit("meters")

bbox = [-87.40, 24.25, -74.70, 36.70]

sos_name = "water_surface_height_above_reference_datum"

In this example we will use only the CoopsSos, but it is worth mentioning that pyoos has other collectors like IOOS SWE, NcSOS, 52N, NERRS, NDBC, etc.

Pyoos' usage is quite simple, all we have to do is:

  • create an instance of the collector we will use and,
  • feed the instance with the data for the collection.

In [3]:
from pyoos.collectors.coops.coops_sos import CoopsSos

collector = CoopsSos()

collector.set_bbox(bbox)
collector.end_time = end_time
collector.start_time = start_time
collector.variables = [sos_name]

Let's check we we got with the search above.


In [4]:
ofrs = collector.server.offerings
title = collector.server.identification.title

print("Collector offerings")
print("{}: {} offerings".format(title, len(ofrs)))


Collector offerings
NOAA.NOS.CO-OPS SOS: 1188 offerings

OK... That is quite misleading. We did not find 1113 stations with that search.

That number is probably all the CO-OPS SOS stations available.

In order to find out what we really get from that search we need to download the data. In the next two cells we will use a custom function to go from the collector object to a list of observations and a pandas DataFrame with all the data.

(Check the code for collector2table for the implementation details.)


In [5]:
import pandas as pd
from ioos_tools.ioos import collector2table

config = dict(units=units, sos_name=sos_name,)

data = collector2table(
    collector=collector,
    config=config,
    col="water_surface_height_above_reference_datum (m)",
)

# Clean the table.
table = dict(
    station_name=[s._metadata.get("station_name") for s in data],
    station_code=[s._metadata.get("station_code") for s in data],
    sensor=[s._metadata.get("sensor") for s in data],
    lon=[s._metadata.get("lon") for s in data],
    lat=[s._metadata.get("lat") for s in data],
    depth=[s._metadata.get("depth") for s in data],
)

table = pd.DataFrame(table).set_index("station_name")

table


Out[5]:
depth lat lon sensor station_code
station_name
Duck, NC None 36.1833 -75.7467 urn:ioos:sensor:NOAA.NOS.CO-OPS:8651370:A1 8651370
Oregon Inlet Marina, NC None 35.7950 -75.5481 urn:ioos:sensor:NOAA.NOS.CO-OPS:8652587:A1 8652587
USCG Station Hatteras, NC None 35.2086 -75.7042 urn:ioos:sensor:NOAA.NOS.CO-OPS:8654467:A1 8654467
Beaufort, NC None 34.7200 -76.6700 urn:ioos:sensor:NOAA.NOS.CO-OPS:8656483:A1 8656483
Wilmington, NC None 34.2275 -77.9536 urn:ioos:sensor:NOAA.NOS.CO-OPS:8658120:B1 8658120
Wrightsville Beach, NC None 34.2133 -77.7867 urn:ioos:sensor:NOAA.NOS.CO-OPS:8658163:A1 8658163
Springmaid Pier, SC None 33.6550 -78.9183 urn:ioos:sensor:NOAA.NOS.CO-OPS:8661070:Y1 8661070
Oyster Landing (N Inlet Estuary), SC None 33.3517 -79.1867 urn:ioos:sensor:NOAA.NOS.CO-OPS:8662245:A1 8662245
Charleston, Cooper River Entrance, SC None 32.7808 -79.9236 urn:ioos:sensor:NOAA.NOS.CO-OPS:8665530:A1 8665530
Fort Pulaski, GA None 32.0367 -80.9017 urn:ioos:sensor:NOAA.NOS.CO-OPS:8670870:A1 8670870
Fernandina Beach, FL None 30.6714 -81.4658 urn:ioos:sensor:NOAA.NOS.CO-OPS:8720030:Y1 8720030
Mayport (Bar Pilots Dock), FL None 30.3982 -81.4279 urn:ioos:sensor:NOAA.NOS.CO-OPS:8720218:A1 8720218
Dames Point, FL None 30.3872 -81.5592 urn:ioos:sensor:NOAA.NOS.CO-OPS:8720219:A1 8720219
Southbank Riverwalk, St Johns River, FL None 30.3205 -81.6591 urn:ioos:sensor:NOAA.NOS.CO-OPS:8720226:B1 8720226
Racy Point, St Johns River, FL None 29.8002 -81.5498 urn:ioos:sensor:NOAA.NOS.CO-OPS:8720625:A1 8720625
Trident Pier, Port Canaveral, FL None 28.4158 -80.5931 urn:ioos:sensor:NOAA.NOS.CO-OPS:8721604:A1 8721604
Lake Worth Pier, Atlantic Ocean, FL None 26.6128 -80.0342 urn:ioos:sensor:NOAA.NOS.CO-OPS:8722670:N1 8722670
Virginia Key, Biscayne Bay, FL None 25.7317 -80.1617 urn:ioos:sensor:NOAA.NOS.CO-OPS:8723214:A1 8723214
Vaca Key, Florida Bay, FL None 24.7110 -81.1065 urn:ioos:sensor:NOAA.NOS.CO-OPS:8723970:A1 8723970
Key West, FL None 24.5557 -81.8079 urn:ioos:sensor:NOAA.NOS.CO-OPS:8724580:A1 8724580
Naples, Gulf of Mexico, FL None 26.1317 -81.8075 urn:ioos:sensor:NOAA.NOS.CO-OPS:8725110:A1 8725110
Fort Myers, Caloosahatchee River, FL None 26.6480 -81.8710 urn:ioos:sensor:NOAA.NOS.CO-OPS:8725520:B1 8725520
Port Manatee, FL None 27.6383 -82.5625 urn:ioos:sensor:NOAA.NOS.CO-OPS:8726384:A1 8726384
St Petersburg, Tampa Bay, FL None 27.7606 -82.6269 urn:ioos:sensor:NOAA.NOS.CO-OPS:8726520:Y1 8726520
Old Port Tampa, FL None 27.8578 -82.5528 urn:ioos:sensor:NOAA.NOS.CO-OPS:8726607:A1 8726607
Mckay Bay Entrance, FL None 27.9130 -82.4250 urn:ioos:sensor:NOAA.NOS.CO-OPS:8726667:A1 8726667
Clearwater Beach, FL None 27.9783 -82.8317 urn:ioos:sensor:NOAA.NOS.CO-OPS:8726724:A1 8726724
Cedar Key, FL None 29.1336 -83.0309 urn:ioos:sensor:NOAA.NOS.CO-OPS:8727520:A1 8727520
Apalachicola, FL None 29.7244 -84.9806 urn:ioos:sensor:NOAA.NOS.CO-OPS:8728690:A1 8728690
Panama City, FL None 30.1523 -85.7000 urn:ioos:sensor:NOAA.NOS.CO-OPS:8729108:A1 8729108
Panama City Beach, FL None 30.2133 -85.8783 urn:ioos:sensor:NOAA.NOS.CO-OPS:8729210:A1 8729210
Pensacola, FL None 30.4044 -87.2100 urn:ioos:sensor:NOAA.NOS.CO-OPS:8729840:A1 8729840

In the next cell we will re-sample all the observation from CO-OPS' original frequency (6 minutes) to 15 minutes to reduce the amount of data and hopefully some of the noise too.


In [6]:
index = pd.date_range(
    start=start_time.replace(tzinfo=None),
    end=end_time.replace(tzinfo=None),
    freq="15min",
)

# Re-index and rename series.
observations = []
for series in data:
    _metadata = series._metadata
    series.index = series.index.tz_localize(None)
    obs = series.reindex(index=index, limit=1, method="nearest")
    obs._metadata = _metadata
    obs.name = _metadata["station_name"]
    observations.append(obs)

We can now check the station with the highest sea elevation.


In [7]:
%matplotlib inline

df = pd.DataFrame(observations).T

station = df.max(axis=0).idxmax()

ax = df[station].plot(figsize=(7, 2.25))
title = ax.set_title(station)


Oops. That does not look right! The data are near-real time, so some QA/QC may be needed before we move forward.

We can filter spikes with a simple first difference rule.

(Check the code for first_difference for the implementation details.)


In [8]:
from ioos_tools.qaqc import first_difference

mask = df.apply(first_difference, args=(0.99,))

df = df[~mask].interpolate()

ax = df[station].plot(figsize=(7, 2.25))
title = ax.set_title(station)


That is much better! Now we can plot the station that actually registered the highest sea elevation.


In [9]:
station = df.max(axis=0).idxmax()

ax = df[station].plot(figsize=(7, 2.25))
title = ax.set_title(station)


Let's plot the last 5 stations, from North Carolina, so we can compare with Fort Pulaski, GA.


In [10]:
import matplotlib
import matplotlib.pyplot as plt

with matplotlib.style.context(["seaborn-notebook", "seaborn-darkgrid"]):
    fix, axes = plt.subplots(nrows=5, sharex=True, sharey=True, figsize=(11, 2.25 * 5))

    for k, obs in enumerate(observations[:5]):
        axes[k].plot(obs.index, obs.values)
        axes[k].text(obs.index[20], 0, obs._metadata["station_name"])


Ideally we should filter out the tides in order to better interpret the storm surges. We'll leave that as an exercise to the readers.

In order to easily explore all the stations we can put together an interactive map with the stations positions and the elevation time-series. This can be done using the software package bokeh and the mapping library folium.


In [11]:
from bokeh.embed import file_html
from bokeh.plotting import figure
from bokeh.resources import CDN
from folium import IFrame

# Plot defaults.
tools = "pan,box_zoom,reset"
width, height = 750, 250


def make_plot(series):
    p = figure(
        toolbar_location="above",
        x_axis_type="datetime",
        width=width,
        height=height,
        tools=tools,
        title=series.name,
    )
    line = p.line(
        x=series.index,
        y=series.values,
        line_width=5,
        line_cap="round",
        line_join="round",
    )
    return p, line


def make_marker(p, location, fname):
    html = file_html(p, CDN, fname)
    iframe = IFrame(html, width=width + 45, height=height + 80)

    popup = folium.Popup(iframe, max_width=2650)
    icon = folium.Icon(color="green", icon="stats")
    marker = folium.Marker(location=location, popup=popup, icon=icon)
    return marker

In [12]:
import folium

lon = (bbox[0] + bbox[2]) / 2
lat = (bbox[1] + bbox[3]) / 2

m = folium.Map(location=[lat, lon], tiles="OpenStreetMap", zoom_start=5)

for obs in observations:
    fname = obs._metadata["station_code"]
    location = obs._metadata["lat"], obs._metadata["lon"]
    p, _ = make_plot(obs)
    marker = make_marker(p, location=location, fname=fname)
    marker.add_to(m)

m


Out[12]: