Cleaning and Dummification Notebook

This notebook contains all the steps I took to clean my data and make it viable for all types of classificaton algo's.

At the end of this notebook, I load the dataframe into a PostgreSQL database. There isnt really a need for this, but it's a matter of demonstrating the skillset.


In [1]:
%matplotlib inline
import pickle
%run helper_functions.py
pd.options.display.max_columns = 1000
plt.rcParams["figure.figsize"] = (15,10)
from datetime import datetime
# from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier

In [2]:
df = unpickle_object("non_current_df.pkl") #loans that are 'complete'

In [3]:
df.shape


Out[3]:
(538008, 110)

I will manipulate my dataset in order for it to be compatible with both GLM's and classification algorithms.

As such, I will create dummies and scale all of data. Scaling is incredibly important for KNN and will improve model performance for Logisitc Regression.

I am not particularly concerned with coeff interpretability as the purpose is the assign a class.

By manipulating my data in this way, I will be ready to be used by any ML model.

I will use 3 in particular:

  • Dummy Classifier. This will the global baseline I have to beat.

  • KNN (My most constrained model)

  • Logistic Regression

  • Random Forests

Note that Multi-collinearity does NOT matter for models like DT's and RF's - however, it will matter for Logistic regression. I will first throw all of my data at LGR, and remove variables (multi-collinear) accordingly (this creates a baselinne model for lgr).

My project will be concerned with classifying whether an individual will re-pay their loan on time. I will change the 'loan status' feature in this dataset into a binary form of "Fully Paid" or "Late"


In [4]:
df['loan_status'].unique()


Out[4]:
array(['Fully Paid', 'Charged Off', 'Late (31-120 days)',
       'Late (16-30 days)', 'In Grace Period', 'Default',
       'Does not meet the credit policy. Status:Fully Paid',
       'Does not meet the credit policy. Status:Charged Off', 'Issued'], dtype=object)

In [5]:
mask = df['loan_status'] != "Fully Paid"
rows_to_change = df[mask]
rows_to_change.loc[:, 'loan_status'] = 'Late'
df.update(rows_to_change)


/usr/local/lib/python3.5/dist-packages/pandas/core/indexing.py:517: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
  self.obj[item] = s

In [6]:
df['loan_status'].unique() #sweet!


Out[6]:
array(['Fully Paid', 'Late'], dtype=object)

In [7]:
df.shape # no dimensionality lost


Out[7]:
(538008, 110)

In [8]:
plot_corr_matrix(df)


Let's have a quick look at all of our columns, their descriptions and associated datatype.

Perhaps we can reduce the dimension of our dataset off the bat by dropping columns that are not pertinent


In [9]:
no_desc = []
for column in df.columns:
    try:
        print(column+":",lookup_description(column)," DataType:", df[column].dtype)
        print()
    except KeyError:
        no_desc.append(column)


id: A unique LC assigned ID for the loan listing.  DataType: float64

member_id: A unique LC assigned Id for the borrower member.  DataType: float64

loan_amnt: The listed amount of the loan applied for by the borrower. If at some point in time, the credit department reduces the loan amount, then it will be reflected in this value.  DataType: float64

funded_amnt: The total amount committed to that loan at that point in time.  DataType: float64

funded_amnt_inv: The total amount committed by investors for that loan at that point in time.  DataType: float64

term: The number of payments on the loan. Values are in months and can be either 36 or 60.  DataType: object

int_rate: Interest Rate on the loan  DataType: float64

installment: The monthly payment owed by the borrower if the loan originates.  DataType: float64

grade: LC assigned loan grade  DataType: object

sub_grade: LC assigned loan subgrade  DataType: object

emp_title: The job title supplied by the Borrower when applying for the loan.*  DataType: object

emp_length: Employment length in years. Possible values are between 0 and 10 where 0 means less than one year and 10 means ten or more years.   DataType: object

home_ownership: The home ownership status provided by the borrower during registration or obtained from the credit report. Our values are: RENT, OWN, MORTGAGE, OTHER  DataType: object

annual_inc: The self-reported annual income provided by the borrower during registration.  DataType: float64

verification_status: Indicates if income was verified by LC, not verified, or if the income source was verified  DataType: object

issue_d: The month which the loan was funded  DataType: object

loan_status: Current status of the loan  DataType: object

pymnt_plan: Indicates if a payment plan has been put in place for the loan  DataType: object

desc: Loan description provided by the borrower  DataType: object

purpose: A category provided by the borrower for the loan request.   DataType: object

title: The loan title provided by the borrower  DataType: object

zip_code: The first 3 numbers of the zip code provided by the borrower in the loan application.  DataType: object

addr_state: The state provided by the borrower in the loan application  DataType: object

dti: A ratio calculated using the borrower’s total monthly debt payments on the total debt obligations, excluding mortgage and the requested LC loan, divided by the borrower’s self-reported monthly income.  DataType: float64

delinq_2yrs: The number of 30+ days past-due incidences of delinquency in the borrower's credit file for the past 2 years  DataType: float64

earliest_cr_line: The month the borrower's earliest reported credit line was opened  DataType: object

inq_last_6mths: The number of inquiries in past 6 months (excluding auto and mortgage inquiries)  DataType: float64

mths_since_last_delinq: The number of months since the borrower's last delinquency.  DataType: float64

mths_since_last_record: The number of months since the last public record.  DataType: float64

open_acc: The number of open credit lines in the borrower's credit file.  DataType: float64

pub_rec: Number of derogatory public records  DataType: float64

revol_bal: Total credit revolving balance  DataType: float64

revol_util: Revolving line utilization rate, or the amount of credit the borrower is using relative to all available revolving credit.  DataType: float64

total_acc: The total number of credit lines currently in the borrower's credit file  DataType: float64

initial_list_status: The initial listing status of the loan. Possible values are – W, F  DataType: object

out_prncp: Remaining outstanding principal for total amount funded  DataType: float64

out_prncp_inv: Remaining outstanding principal for portion of total amount funded by investors  DataType: float64

total_pymnt: Payments received to date for total amount funded  DataType: float64

total_pymnt_inv: Payments received to date for portion of total amount funded by investors  DataType: float64

total_rec_prncp: Principal received to date  DataType: float64

total_rec_int: Interest received to date  DataType: float64

total_rec_late_fee: Late fees received to date  DataType: float64

recoveries: post charge off gross recovery  DataType: float64

collection_recovery_fee: post charge off collection fee  DataType: float64

last_pymnt_d: Last month payment was received  DataType: object

last_pymnt_amnt: Last total payment amount received  DataType: float64

next_pymnt_d: Next scheduled payment date  DataType: object

last_credit_pull_d: The most recent month LC pulled credit for this loan  DataType: object

collections_12_mths_ex_med: Number of collections in 12 months excluding medical collections  DataType: float64

mths_since_last_major_derog: Months since most recent 90-day or worse rating  DataType: float64

policy_code: publicly available policy_code=1
new products not publicly available policy_code=2  DataType: float64

application_type: Indicates whether the loan is an individual application or a joint application with two co-borrowers  DataType: object

annual_inc_joint: The combined self-reported annual income provided by the co-borrowers during registration  DataType: float64

dti_joint: A ratio calculated using the co-borrowers' total monthly payments on the total debt obligations, excluding mortgages and the requested LC loan, divided by the co-borrowers' combined self-reported monthly income  DataType: float64

acc_now_delinq: The number of accounts on which the borrower is now delinquent.  DataType: float64

tot_coll_amt: Total collection amounts ever owed  DataType: float64

tot_cur_bal: Total current balance of all accounts  DataType: float64

open_acc_6m: Number of open trades in last 6 months  DataType: float64

open_il_6m: Number of currently active installment trades  DataType: float64

open_il_12m: Number of installment accounts opened in past 12 months  DataType: float64

open_il_24m: Number of installment accounts opened in past 24 months  DataType: float64

mths_since_rcnt_il: Months since most recent installment accounts opened  DataType: float64

total_bal_il: Total current balance of all installment accounts  DataType: float64

il_util: Ratio of total current balance to high credit/credit limit on all install acct  DataType: float64

open_rv_12m: Number of revolving trades opened in past 12 months  DataType: float64

open_rv_24m: Number of revolving trades opened in past 24 months  DataType: float64

max_bal_bc: Maximum current balance owed on all revolving accounts  DataType: float64

all_util: Balance to credit limit on all trades  DataType: float64

inq_fi: Number of personal finance inquiries  DataType: float64

total_cu_tl: Number of finance trades  DataType: float64

inq_last_12m: Number of credit inquiries in past 12 months  DataType: float64

acc_open_past_24mths: Number of trades opened in past 24 months.  DataType: float64

avg_cur_bal: Average current balance of all accounts  DataType: float64

bc_open_to_buy: Total open to buy on revolving bankcards.  DataType: float64

bc_util: Ratio of total current balance to high credit/credit limit for all bankcard accounts.  DataType: float64

chargeoff_within_12_mths: Number of charge-offs within 12 months  DataType: float64

delinq_amnt: The past-due amount owed for the accounts on which the borrower is now delinquent.  DataType: float64

mo_sin_old_il_acct: Months since oldest bank installment account opened  DataType: float64

mo_sin_old_rev_tl_op: Months since oldest revolving account opened  DataType: float64

mo_sin_rcnt_rev_tl_op: Months since most recent revolving account opened  DataType: float64

mo_sin_rcnt_tl: Months since most recent account opened  DataType: float64

mort_acc: Number of mortgage accounts.  DataType: float64

mths_since_recent_bc: Months since most recent bankcard account opened.  DataType: float64

mths_since_recent_bc_dlq: Months since most recent bankcard delinquency  DataType: float64

mths_since_recent_inq: Months since most recent inquiry.  DataType: float64

mths_since_recent_revol_delinq: Months since most recent revolving delinquency.  DataType: float64

num_accts_ever_120_pd: Number of accounts ever 120 or more days past due  DataType: float64

num_actv_bc_tl: Number of currently active bankcard accounts  DataType: float64

num_actv_rev_tl: Number of currently active revolving trades  DataType: float64

num_bc_sats: Number of satisfactory bankcard accounts  DataType: float64

num_bc_tl: Number of bankcard accounts  DataType: float64

num_il_tl: Number of installment accounts  DataType: float64

num_op_rev_tl: Number of open revolving accounts  DataType: float64

num_rev_accts: Number of revolving accounts  DataType: float64

num_rev_tl_bal_gt_0: Number of revolving trades with balance >0  DataType: float64

num_sats: Number of satisfactory accounts  DataType: float64

num_tl_120dpd_2m: Number of accounts currently 120 days past due (updated in past 2 months)  DataType: float64

num_tl_30dpd: Number of accounts currently 30 days past due (updated in past 2 months)  DataType: float64

num_tl_90g_dpd_24m: Number of accounts 90 or more days past due in last 24 months  DataType: float64

num_tl_op_past_12m: Number of accounts opened in past 12 months  DataType: float64

pct_tl_nvr_dlq: Percent of trades never delinquent  DataType: float64

percent_bc_gt_75: Percentage of all bankcard accounts > 75% of limit.  DataType: float64

pub_rec_bankruptcies: Number of public record bankruptcies  DataType: float64

tax_liens: Number of tax liens  DataType: float64

tot_hi_cred_lim: Total high credit/credit limit  DataType: float64

total_bal_ex_mort: Total credit balance excluding mortgage  DataType: float64

total_bc_limit: Total bankcard high credit/credit limit  DataType: float64

total_il_high_credit_limit: Total installment high credit/credit limit  DataType: float64


In [10]:
columns_to_drop = ["id", "member_id", "emp_title","desc","title","out_prncp","out_prncp_inv","total_pymnt","total_pymnt_inv", "total_rec_prncp", "total_rec_int", "total_rec_late_fee", "recoveries", "collection_recovery_fee","last_pymnt_d", "last_pymnt_amnt","next_pymnt_d", "last_credit_pull_d", "collections_12_mths_ex_med","mths_since_last_major_derog", "all_util", ]

In [11]:
# df.loc[:, ["loan_amnt","funded_amnt","out_prncp","out_prncp_inv","total_pymnt","total_pymnt_inv","total_rec_prncp","last_credit_pull_d"]]

In [12]:
no_desc


Out[12]:
['verification_status_joint', 'total_rev_hi_lim']

In [13]:
df['verification_status_joint'].unique()


Out[13]:
array([nan, 'Not Verified', 'Verified', 'Source Verified'], dtype=object)

In [14]:
df['total_rev_hi_lim'].unique()


Out[14]:
array([     nan,   29700.,   23800., ...,  334560.,  181280.,   26940.])

In [15]:
df['verification_status_joint'].dtype


Out[15]:
dtype('O')

In [16]:
df['total_rev_hi_lim'].dtype


Out[16]:
dtype('float64')

After going through the list, I have decided to drop 5 columns!

These will not be relevant to the task at hand. Although, I could use some natural language processig via NLTK to parse job descriptions and loan descriptions. I will leave this for another day.

It is also important to note that I will be dropping variables that hint (i.e. information leakage) at what the final result will be.


In [17]:
df.drop(columns_to_drop, axis=1, inplace=True)

In [18]:
df.shape #just what we expected


Out[18]:
(538008, 89)

After reviewing the above, the following columns need to be changed to categorical datatypes from float64.

  • policy_code

I will first make it an object datatype as later I will write a function that changed all object datatypes into categorical datatypes.


In [19]:
df["policy_code"] = df["policy_code"].astype('object')

I will have to transform the following columns as they are currently in percentages. I will take the natural log of these columns before proceeding:

  • pct_tl_nvr_dlq

  • percent_bc_gt_75

This will ensure better model performance for logistic regression as % may not follow a linear relationship.


In [20]:
df['pct_tl_nvr_dlq'] = df['pct_tl_nvr_dlq'].apply(lambda x: x/100)
df['percent_bc_gt_75'] = df['percent_bc_gt_75'].apply(lambda x: x/100)

My categorical features (those of type Object) have np.nan values, I will change these to something more meaningful like "Missing Data".

I will then create dummies for all of my categorical features. This will lead to an explosion in the number of columns - this will be more computationally expensive, however, this is NOT an explosion in the 'feature space' as our dataframe contains the same amount of information.


In [21]:
object_columns = df.select_dtypes(include=['object']).columns

for c in object_columns:
    df.loc[df[df[c].isnull()].index, c] = "missing"

So, our dataset is comprised of features which are categorical and features that are numeric. We need to ensure that the object datatypes are converted to categorical datatypes.

Also, whether we use a GLM or classifier, we need to ensure that these datatypes stay consistent.

NOTE: changing columns to categorical datatypes will NOT change how a machine learning model interprets the data. i.e. The algorithm will still think that 5 > 4. As such, one hot encoding (i.e. making dummies) is the only way to ensure that a Machine Learning Model can detect the presence of a particular attribute.

I will be changing the object datatypes to categorical purely for data consistency within the dataframe.


In [22]:
obj_df = df.select_dtypes(include=['object'])

obj_df_cols = obj_df.columns

for col in obj_df_cols:
    df[col] = df[col].astype("category")
    
df.dtypes.unique() #This is what we wanted!


Out[22]:
array([dtype('float64'), category], dtype=object)

In [23]:
df.shape


Out[23]:
(538008, 89)

In [24]:
df.head()


Out[24]:
loan_amnt funded_amnt funded_amnt_inv term int_rate installment grade sub_grade emp_length home_ownership annual_inc verification_status issue_d loan_status pymnt_plan purpose zip_code addr_state dti delinq_2yrs earliest_cr_line inq_last_6mths mths_since_last_delinq mths_since_last_record open_acc pub_rec revol_bal revol_util total_acc initial_list_status policy_code application_type annual_inc_joint dti_joint verification_status_joint acc_now_delinq tot_coll_amt tot_cur_bal open_acc_6m open_il_6m open_il_12m open_il_24m mths_since_rcnt_il total_bal_il il_util open_rv_12m open_rv_24m max_bal_bc total_rev_hi_lim inq_fi total_cu_tl inq_last_12m acc_open_past_24mths avg_cur_bal bc_open_to_buy bc_util chargeoff_within_12_mths delinq_amnt mo_sin_old_il_acct mo_sin_old_rev_tl_op mo_sin_rcnt_rev_tl_op mo_sin_rcnt_tl mort_acc mths_since_recent_bc mths_since_recent_bc_dlq mths_since_recent_inq mths_since_recent_revol_delinq num_accts_ever_120_pd num_actv_bc_tl num_actv_rev_tl num_bc_sats num_bc_tl num_il_tl num_op_rev_tl num_rev_accts num_rev_tl_bal_gt_0 num_sats num_tl_120dpd_2m num_tl_30dpd num_tl_90g_dpd_24m num_tl_op_past_12m pct_tl_nvr_dlq percent_bc_gt_75 pub_rec_bankruptcies tax_liens tot_hi_cred_lim total_bal_ex_mort total_bc_limit total_il_high_credit_limit
0 5000.0 5000.0 4975.0 36 months 10.65 162.87 B B2 10+ years RENT 24000.0 Verified Dec-2011 Fully Paid n credit_card 860xx AZ 27.65 0.0 Jan-1985 1.0 NaN NaN 3.0 0.0 13648.0 83.7 9.0 f 1.0 INDIVIDUAL NaN NaN missing 0.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.0 0.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.0 0.0 NaN NaN NaN NaN
1 2500.0 2500.0 2500.0 60 months 15.27 59.83 C C4 < 1 year RENT 30000.0 Source Verified Dec-2011 Late n car 309xx GA 1.00 0.0 Apr-1999 5.0 NaN NaN 3.0 0.0 1687.0 9.4 4.0 f 1.0 INDIVIDUAL NaN NaN missing 0.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.0 0.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.0 0.0 NaN NaN NaN NaN
2 2400.0 2400.0 2400.0 36 months 15.96 84.33 C C5 10+ years RENT 12252.0 Not Verified Dec-2011 Fully Paid n small_business 606xx IL 8.72 0.0 Nov-2001 2.0 NaN NaN 2.0 0.0 2956.0 98.5 10.0 f 1.0 INDIVIDUAL NaN NaN missing 0.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.0 0.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.0 0.0 NaN NaN NaN NaN
3 10000.0 10000.0 10000.0 36 months 13.49 339.31 C C1 10+ years RENT 49200.0 Source Verified Dec-2011 Fully Paid n other 917xx CA 20.00 0.0 Feb-1996 1.0 35.0 NaN 10.0 0.0 5598.0 21.0 37.0 f 1.0 INDIVIDUAL NaN NaN missing 0.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.0 0.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.0 0.0 NaN NaN NaN NaN
4 3000.0 3000.0 3000.0 60 months 12.69 67.79 B B5 1 year RENT 80000.0 Source Verified Dec-2011 Fully Paid n other 972xx OR 17.94 0.0 Jan-1996 0.0 38.0 NaN 15.0 0.0 27783.0 53.9 38.0 f 1.0 INDIVIDUAL NaN NaN missing 0.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.0 0.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.0 0.0 NaN NaN NaN NaN

In [25]:
unique_val_dict = {}
for col in df.columns:
    if col not in unique_val_dict:
        unique_val_dict[col] = df[col].unique()

In [26]:
unique_val_dict #will use this later when making flask app.


Out[26]:
{'acc_now_delinq': array([  0.,   1.,  nan,   2.,   3.,   5.,   4.,   6.]),
 'acc_open_past_24mths': array([ nan,   8.,   4.,   6.,   3.,   2.,   0.,   7.,   9.,   1.,   5.,
         10.,  21.,  11.,  12.,  13.,  17.,  14.,  15.,  16.,  18.,  22.,
         19.,  24.,  20.,  28.,  23.,  31.,  25.,  33.,  40.,  27.,  29.,
         26.,  35.,  34.,  47.,  39.,  41.,  32.,  38.,  30.,  37.,  42.,
         53.,  50.,  56.]),
 'addr_state': [AZ, GA, IL, CA, OR, ..., NE, ID, IN, ME, ND]
 Length: 51
 Categories (51, object): [AZ, GA, IL, CA, ..., ID, IN, ME, ND],
 'annual_inc': array([  24000.,   30000.,   12252., ...,  192057.,   53535.,  165840.]),
 'annual_inc_joint': array([       nan,   77000.  ,  113314.  ,  140000.  ,   87000.  ,
         102000.  ,  108000.  ,  182000.  ,  122000.  ,  107000.  ,
         133000.  ,   82000.  ,   95000.  ,   70000.  ,  117000.  ,
         112194.  ,   74000.  ,   83200.  ,  115000.  ,   55000.  ,
         224000.  ,  106000.  ,  185000.  ,   52000.  ,   88500.  ,
         132600.  ,   76000.  ,   78200.  ,  105000.  ,  176000.  ,
          93000.  ,   40034.  ,  161000.  ,   69930.  ,   83456.  ,
          97000.  ,  109000.  ,  214000.  ,  136429.  ,   55200.  ,
          99000.  ,  189729.  ,   36000.  ,   51990.  ,   85000.  ,
         109440.  ,   96000.  ,  104800.  ,  116700.  ,  125000.  ,
          46000.  ,   98000.  ,  139000.  ,   63400.  ,   49926.  ,
         130000.  ,   73220.  ,  124000.  ,   75001.  ,   40988.  ,
         103500.  ,  270000.  ,   25142.  ,  151000.  ,   58750.  ,
          90000.  ,   69500.  ,  245000.  ,  152000.  ,  123400.  ,
         101771.  ,   77600.  ,  110000.  ,   61465.  ,  135000.  ,
          71136.  ,  142000.  ,   32760.  ,  149000.  ,  170000.  ,
         168472.  ,  202700.  ,   88400.  ,   81000.  ,   17950.  ,
         101318.  ,  213000.  ,   72653.  ,   64800.  ,  189490.  ,
         175000.  ,  104000.  ,  100000.  ,  126404.  ,   27600.  ,
          29448.  ,  175171.  ,   53000.  ,  111140.  ,   68000.  ,
         113000.  ,   87510.  ,  112862.  ,  141000.  ,   72500.  ,
         123000.  ,   50000.  ,  173000.  ,  126000.  ,   60000.  ,
          99566.  ,   76160.  ,   83000.  ,   67000.  ,   51192.  ,
          73000.  ,  112000.  ,   65000.  ,  103000.  ,   35132.  ,
          27000.  ,  128500.  ,   65136.  ,   88000.  ,   72000.  ,
          58000.  ,  160000.  ,  104954.4 ,   80000.  ,   63985.  ,
          86000.  ,   30000.  ,  116000.  ,  153000.  ,  165000.  ,
         107640.  ,   66000.  ,   91700.  ,  180000.  ,   56000.  ,
         115049.  ,   50460.  ,   45500.  ,  200000.  ,  122500.  ,
         120000.  ,   95956.  ,   72227.  ,   76433.72,  134000.  ,
         155550.  ,  142160.  ,   58691.66,  101500.  ,   77668.  ,
          75000.  ,   63490.13,   79000.  ,  206000.  ,  106537.6 ,
         118500.  ,  220000.  ,  131000.  ,   47000.  ,   31965.76,
          78000.  ,  145040.  ,  170380.  ,   94000.  ,   68662.  ,
         177000.  ,  157000.  ,   61000.  ,   69508.  ,   51000.  ,
         108527.82,  150000.  ,   71000.  ,  101000.  ,  120200.7 ,
          66800.  ,   77113.  ,  210000.  ,  199000.  ,   87900.  ,
         155000.  ,   86500.  ,  111000.  ,  114509.  ,  138000.  ,
          62925.24,  143423.91,  202555.  ,   62000.  ,  158000.  ,
         244260.  ,  180025.  ,   48760.  ,  307000.  ,   84000.  ,
          48000.  ,  118800.  ,  174000.  ,   86250.  ,   80600.  ,
         118000.  ,  124600.  ,   62500.  ,  149760.  ,  129000.  ,
          68200.  ,  121200.  ,  169000.  ,  196000.  ,  152600.  ,
         111849.  ,   91000.  ,  212000.  ,   59000.  ,   71770.  ,
         310000.  ,  158600.  ,  164000.  ,   48795.2 ,   92000.  ,
         145000.  ,  162000.  ,  105500.  ,   44520.  ,  122964.  ,
         171000.  ,   40000.  ,   33672.  ,   32660.  ,  110574.  ,
         135940.  ,  125100.  ,   99800.  ,  181200.  ,   51672.  ,
          18072.  ,  121000.  ,  138921.  ,  225000.  ,   69000.  ,
         101666.  ,  195000.  ,   96350.  ,   26400.  ,   57000.  ,
          19200.  ,   33876.  ,  145400.  ,   87321.  ,  129500.  ,
         132000.  ,  133200.  ,   98760.  ,  136200.  ,  114607.6 ,
         137000.  ,  119000.  ,   21276.  ,   53500.  ,  211800.  ,
         192000.  ,   53309.76,   45000.  ,   70320.  ,  115200.  ,
          72700.  ,  125400.  ,  148000.  ,   92160.  ,   56928.  ,
         143000.  ,   71200.  ,  147000.  ,  320000.  ,   95680.  ,
         159000.  ,  112320.  ,  272000.  ,  100606.  ,  150600.  ,
         117245.  ,  264000.  ,  215705.  ,  280000.  ,  128000.  ,
         154000.  ,  116100.  ,   37000.  ,   46488.8 ,  323424.  ,
         108699.  ,   66692.  ,  114000.  ,   75700.  ,   56640.  ,
          42999.  ,  119084.  ,   77584.  ,  168000.  ,  228400.  ,
          94419.  ,  191126.  ,   77924.  ,  100446.  ,   40500.  ,
          40050.  ,  144000.  ,  186000.  ,   95682.  ,  127000.  ,
         140500.  ,   86800.  ,   91726.  ,  303000.  ,   82392.  ,
          66087.  ,   67200.  ,   99750.  ,   38500.  ,  208000.  ,
         126324.  ,  113500.  ,  201000.  ,  400000.  ,  126291.  ,
          84418.  ,  250000.  ,   66508.8 ,  136000.  ,  163510.  ,
          78500.  ,  153600.  ,   92417.  ,   34000.  ,  231000.  ,
         190000.  ,   77454.  ,   83500.  ,  340000.  ,   63000.  ,
          44000.  ,  240000.  ,   98200.  ,  216000.  ,  163000.  ,
          83825.  ,  173600.  ,   87200.  ,   91305.  ,   86360.  ,
          79600.  ,  189000.  ,  166600.  ,  235570.  ,   41000.  ,
         114156.  ,  137372.  ,   73200.  ,   43000.  ,   56267.72,
         178000.  ,  127500.  ,  260000.  ,  274000.  ,  140829.57,
          79500.  ,  197000.  ,   78956.8 ,   64000.  ,   52033.  ,
          83256.  ,   61372.  ,  248000.  ,  127600.  ,   83899.5 ,
         156000.  ,   68800.  ,   90089.  ,   31000.  ,   39300.  ,
         118320.  ,   89000.  ,   85800.  ,   35500.  ,  290000.  ,
         175666.  ,  131150.  ,  149900.  ,   45990.82,  112400.  ,
          59500.  ,   91280.  ,   98156.  ,  104400.  ,   86001.  ,
         193000.  ,   84500.  ,   44160.  ,  116400.  ,   87501.  ,
         132280.  ,  234000.  ,   72238.  ,   69400.  ,   71947.2 ,
          52500.  ,   79300.  ,   82800.  ,  139965.  ,   61500.  ,
          94300.  ,   76454.  ,  210178.  ,   79270.  ,   67080.  ,
         202000.  ,  255000.  ,  160632.  ]),
 'application_type': [INDIVIDUAL, JOINT, DIRECT_PAY]
 Categories (3, object): [INDIVIDUAL, JOINT, DIRECT_PAY],
 'avg_cur_bal': array([    nan,    476.,  11783., ...,  56694.,  69555.,  65187.]),
 'bc_open_to_buy': array([     nan,   15216.,    2441., ...,   30707.,  101758.,   53336.]),
 'bc_util': array([   nan,   15.9,   83.5, ...,  124.9,  122.6,  162. ]),
 'chargeoff_within_12_mths': array([  0.,  nan,   1.,   2.,   3.,   4.,   5.,   7.,   6.]),
 'delinq_2yrs': array([  0.,   2.,   3.,   1.,   4.,   6.,   5.,   8.,   7.,   9.,  11.,
         nan,  13.,  15.,  10.,  12.,  17.,  18.,  29.,  24.,  14.,  16.,
         26.,  27.,  39.,  20.,  22.,  19.,  21.]),
 'delinq_amnt': array([  0.00000000e+00,              nan,   2.70000000e+01,
          6.05300000e+03,   3.21000000e+02,   4.56000000e+02,
          1.03300000e+03,   3.53000000e+02,   2.24000000e+02,
          2.60000000e+01,   6.57600000e+03,   1.53600000e+03,
          4.50000000e+01,   3.23000000e+02,   1.56870000e+04,
          2.35000000e+02,   8.60000000e+01,   5.40000000e+01,
          3.44000000e+03,   8.31000000e+02,   5.20000000e+01,
          1.33000000e+02,   2.50000000e+01,   3.67870000e+04,
          1.12000000e+02,   5.70000000e+01,   2.12000000e+02,
          1.42000000e+02,   4.82000000e+02,   5.30000000e+01,
          1.70300000e+03,   1.10000000e+02,   4.67000000e+02,
          4.88000000e+02,   5.50000000e+01,   4.13290000e+04,
          3.94000000e+02,   5.68400000e+03,   8.11000000e+02,
          5.12000000e+02,   1.61500000e+03,   2.51500000e+03,
          5.60000000e+01,   1.34000000e+02,   5.04890000e+04,
          1.85000000e+02,   3.42000000e+02,   6.37000000e+02,
          3.00000000e+01,   3.01000000e+02,   2.04000000e+02,
          1.04000000e+02,   7.60000000e+01,   9.03000000e+02,
          5.00000000e+00,   2.20000000e+02,   3.74500000e+03,
          6.30000000e+01,   3.50000000e+01,   3.09700000e+03,
          4.65800000e+03,   2.91800000e+03,   7.90000000e+01,
          4.31000000e+02,   5.00380000e+04,   1.44000000e+02,
          6.90000000e+01,   1.17000000e+03,   4.87000000e+02,
          3.37000000e+02,   6.46000000e+02,   2.71200000e+03,
          1.15500000e+03,   8.59000000e+02,   6.56000000e+02,
          6.07000000e+02,   3.10000000e+01,   9.50000000e+01,
          1.49000000e+02,   6.10000000e+01,   2.64200000e+03,
          8.50000000e+01,   2.94000000e+02,   5.00000000e+01,
          2.40000000e+02,   2.66670000e+04,   3.51000000e+02,
          2.78300000e+04,   1.19500000e+03,   3.62300000e+03,
          1.80000000e+02,   2.49000000e+02,   5.26000000e+02,
          1.64000000e+02,   2.42400000e+03,   5.37600000e+04,
          5.63000000e+02,   8.37000000e+02,   7.50000000e+01,
          4.00000000e+01,   1.04800000e+03,   3.09900000e+03,
          3.00000000e+00,   8.40000000e+01,   7.20000000e+01,
          3.25600000e+03,   3.03000000e+02,   4.44000000e+02,
          6.13950000e+04,   2.32200000e+03,   2.45000000e+02,
          6.05000000e+02,   1.68790000e+04,   1.70540000e+04,
          1.87290000e+04,   5.97000000e+02,   5.10000000e+01,
          8.00000000e+01,   1.24100000e+03,   3.05900000e+03,
          4.39300000e+03,   7.78000000e+02,   2.00000000e+01,
          4.20000000e+01,   8.95700000e+03,   4.30000000e+01,
          7.00000000e+01,   5.19200000e+03,   2.61000000e+02,
          2.12920000e+04,   7.67000000e+02,   1.00000000e+01,
          3.73000000e+02,   1.43000000e+02,   3.61000000e+02,
          2.20000000e+01,   1.65000000e+02,   1.97000000e+02,
          4.40900000e+03,   9.52200000e+03,   3.56000000e+02,
          1.75000000e+02,   4.01400000e+03,   6.55000000e+03,
          1.21900000e+03,   9.04000000e+02,   6.50000000e+04,
          2.49230000e+04,   3.80600000e+03,   2.11650000e+04,
          1.59000000e+02,   3.32000000e+02,   9.80000000e+01,
          1.74810000e+04,   1.52000000e+02,   1.10190000e+04,
          3.80000000e+01,   9.50000000e+02,   7.24000000e+02,
          2.42600000e+03,   3.11080000e+04,   6.45700000e+03,
          4.22800000e+03,   1.57900000e+03,   5.98400000e+03,
          2.81600000e+03,   1.63200000e+03,   2.40000000e+01,
          2.35500000e+03,   1.16000000e+02,   1.04020000e+04,
          7.75300000e+03,   1.07000000e+02,   3.33000000e+02,
          3.82000000e+02,   6.06000000e+02,   6.68000000e+02,
          4.73000000e+02,   6.20000000e+01,   7.27500000e+03,
          7.80000000e+01,   7.02000000e+02,   5.64000000e+02,
          1.90470000e+04,   2.54000000e+02,   4.17600000e+03,
          7.43000000e+02,   4.23990000e+04,   1.89360000e+04,
          1.94800000e+03,   5.80000000e+01,   1.92100000e+03,
          3.50000000e+02,   2.92000000e+02,   1.45900000e+03,
          7.96000000e+02,   7.83000000e+02,   1.17000000e+02,
          5.30000000e+02,   7.39800000e+03,   2.47600000e+03,
          1.55200000e+03,   1.69000000e+02,   2.06000000e+02,
          8.76900000e+03,   2.16500000e+03,   7.26100000e+03,
          9.20000000e+01,   7.65000000e+02,   4.37000000e+02,
          2.30000000e+01,   1.50000000e+01,   4.63770000e+04,
          1.04360000e+04,   4.39200000e+03,   2.17500000e+03,
          1.78990000e+04,   7.38000000e+02,   3.20000000e+01,
          4.00000000e+00,   3.40000000e+01,   1.26010000e+04,
          5.82000000e+02,   2.10000000e+01,   1.01690000e+04,
          3.90000000e+01,   1.78900000e+03,   1.96000000e+02,
          1.94100000e+03,   6.60000000e+01,   6.70000000e+01,
          1.43500000e+03,   3.85400000e+03,   2.09300000e+03,
          6.63000000e+02,   4.20530000e+04,   6.29000000e+02,
          6.34530000e+04,   1.90000000e+01,   5.36900000e+03,
          3.12190000e+04,   1.06100000e+03,   1.70000000e+01,
          1.30630000e+04,   1.26410000e+04,   4.80000000e+01,
          2.37800000e+03,   1.08500000e+03,   1.90280000e+04,
          4.04000000e+02,   4.40000000e+02,   6.85500000e+03,
          2.45210000e+04,   4.24600000e+03,   2.10590000e+04,
          3.54400000e+03,   1.38000000e+03,   1.16400000e+03,
          1.18000000e+02,   1.39400000e+03,   7.84900000e+03,
          4.59000000e+03,   1.84000000e+02,   1.80000000e+01,
          1.26000000e+02,   9.17000000e+02,   2.53000000e+02,
          8.82160000e+04,   1.77520000e+04,   6.67000000e+02,
          6.81000000e+02,   1.54000000e+02,   8.20000000e+01,
          2.46600000e+03,   1.19000000e+02,   1.32000000e+02,
          2.60000000e+02,   8.56000000e+02,   1.71000000e+03,
          6.65000000e+02,   6.00000000e+01,   1.27000000e+02,
          5.50100000e+03,   2.93000000e+02,   6.36000000e+02,
          1.00870000e+04,   1.04900000e+03,   2.95000000e+02,
          2.32000000e+02,   1.39000000e+02,   4.89000000e+02,
          1.77000000e+02,   1.08000000e+02,   1.31100000e+03,
          1.30000000e+01,   1.57000000e+02,   8.34000000e+03,
          3.60000000e+01,   3.59600000e+03,   1.01900000e+03,
          1.45000000e+02,   1.28400000e+03,   1.06000000e+02,
          2.75400000e+03,   2.56900000e+04,   2.11000000e+02,
          3.96000000e+02,   6.58400000e+03,   5.28000000e+02,
          4.63000000e+02,   4.25300000e+03,   4.18000000e+02,
          2.48190000e+04,   1.33180000e+04,   2.62000000e+02,
          8.00000000e+00,   6.40000000e+01,   1.73300000e+03,
          4.61000000e+02,   5.25000000e+02,   2.08600000e+03,
          3.02000000e+02,   7.41000000e+02,   1.79000000e+02,
          1.13880000e+04,   2.24500000e+03,   1.05000000e+02,
          7.47000000e+02,   3.43000000e+03,   1.31500000e+03,
          5.00000000e+02,   3.96600000e+03,   6.33000000e+02,
          9.90000000e+01,   7.57000000e+02,   2.41100000e+03,
          5.33000000e+02,   6.49000000e+02,   1.25200000e+03,
          2.17000000e+02,   3.68000000e+02,   4.24000000e+02,
          1.10100000e+03,   3.59000000e+02,   5.29000000e+02,
          1.81800000e+03,   9.00000000e+00,   4.40000000e+01,
          5.09000000e+02,   2.43000000e+02,   2.84790000e+04,
          1.00100000e+03,   7.67350000e+04,   1.03000000e+02,
          7.45000000e+02,   1.41300000e+03,   5.06000000e+02,
          3.12500000e+03,   1.78000000e+02,   1.30990000e+04,
          3.22900000e+03,   4.22000000e+02,   4.02610000e+04,
          1.10000000e+01,   1.35000000e+02,   7.30000000e+01,
          9.28000000e+02,   8.90000000e+01,   9.88000000e+02,
          1.68000000e+02,   2.73390000e+04,   2.15000000e+02,
          1.85800000e+03,   3.03500000e+03,   2.66900000e+03,
          4.84000000e+02,   3.20000000e+02,   3.04000000e+02,
          2.14000000e+02,   2.50000000e+03,   4.60000000e+01,
          1.11800000e+03,   9.10000000e+01,   9.44000000e+02,
          1.69000000e+04,   7.00000000e+02,   4.10000000e+01,
          1.99000000e+02,   5.26500000e+03,   8.20000000e+02,
          2.47900000e+04,   7.00000000e+00,   9.12000000e+02,
          3.48000000e+02,   1.87000000e+02,   2.47400000e+03,
          3.69000000e+02,   4.08200000e+03,   2.63300000e+03,
          2.51000000e+02,   4.23000000e+02,   9.70000000e+02,
          4.80000000e+02,   4.69000000e+02,   1.00800000e+03,
          2.66000000e+02,   4.74000000e+02,   9.30000000e+01,
          2.30720000e+04,   5.65000000e+02,   1.67900000e+03,
          1.31000000e+02,   6.72000000e+02,   1.10950000e+04,
          4.36000000e+02,   1.23000000e+02,   8.90000000e+02,
          2.90000000e+01,   1.55000000e+02,   6.00000000e+00,
          3.98000000e+02,   5.88800000e+03,   1.13750000e+04,
          6.66600000e+03,   4.85000000e+02,   5.92000000e+02,
          3.97000000e+02,   8.53000000e+03,   9.46000000e+02,
          5.42000000e+02,   4.29300000e+03,   2.64000000e+02,
          1.86000000e+02,   1.86000000e+03,   4.48000000e+02,
          4.40130000e+04,   2.74000000e+02,   1.73000000e+02,
          8.77000000e+02,   5.15940000e+04,   1.92000000e+02,
          1.58480000e+04,   2.00000000e+02,   6.73200000e+03,
          1.56000000e+02,   2.00000000e+03,   2.55000000e+02,
          1.20830000e+04,   1.60000000e+02,   2.42200000e+03,
          4.60000000e+02,   3.39000000e+02,   3.30000000e+01,
          9.73000000e+02,   9.00000000e+01,   3.76000000e+03,
          1.14000000e+02,   5.63380000e+04,   2.00440000e+04,
          4.29260000e+04,   2.14500000e+03,   2.12400000e+03,
          3.79800000e+03,   6.30400000e+03,   6.53000000e+02,
          2.34000000e+02,   7.40000000e+01,   4.67930000e+04,
          1.77100000e+03,   3.30700000e+03,   2.89000000e+02,
          4.34000000e+02,   5.27000000e+02,   1.28000000e+02,
          3.54000000e+02,   3.12000000e+02,   5.19000000e+02,
          1.56100000e+03,   2.09000000e+02,   4.59450000e+04,
          1.64700000e+03,   3.63900000e+03,   4.51000000e+02,
          2.65480000e+04,   1.13000000e+02,   3.93200000e+03,
          1.22900000e+03,   6.38670000e+04,   3.60780000e+04,
          5.79000000e+02,   6.51000000e+02,   8.30000000e+01,
          1.00400000e+03,   2.44000000e+02,   7.68000000e+02,
          3.75000000e+02,   1.76000000e+02,   2.39000000e+02,
          9.70000000e+01,   1.21000000e+02,   2.41700000e+04,
          1.72000000e+03,   3.56700000e+03,   2.13000000e+03,
          1.86900000e+03,   3.38000000e+02,   8.80000000e+01,
          6.50000000e+01,   3.60000000e+02,   2.75000000e+03,
          3.82200000e+03,   2.89200000e+03,   2.73000000e+03,
          8.19000000e+02,   6.80000000e+01,   9.57000000e+02,
          3.08000000e+02,   1.81700000e+03,   3.34000000e+02,
          4.11500000e+03,   8.38000000e+02,   5.85000000e+02,
          1.75230000e+04,   9.90300000e+03,   5.66000000e+02,
          2.25700000e+03,   7.87000000e+02,   5.69000000e+02,
          5.90000000e+01,   1.06200000e+03,   2.53200000e+03,
          1.67100000e+03,   3.49300000e+03,   2.77000000e+02,
          1.25800000e+03,   7.70000000e+01,   1.25000000e+03,
          1.47400000e+03,   1.44300000e+03,   3.81000000e+02,
          2.48000000e+02,   7.54800000e+03,   6.06480000e+04,
          7.88000000e+02,   4.79000000e+02,   1.34000000e+03,
          2.70000000e+02,   2.46000000e+02,   4.05000000e+02,
          8.60000000e+02,   2.10000000e+02,   2.59000000e+02,
          1.93700000e+03,   7.90000000e+02,   5.32700000e+03,
          1.79000000e+03,   2.83000000e+02,   4.88600000e+03,
          2.27300000e+03,   1.87200000e+03,   2.00570000e+04,
          6.64000000e+02,   3.70000000e+01,   1.20000000e+01,
          1.43300000e+03,   2.63000000e+02,   4.99000000e+02,
          1.82000000e+02,   4.10000000e+02,   1.36000000e+02,
          4.90000000e+01,   3.55000000e+02,   6.82000000e+02,
          2.72000000e+02,   2.03000000e+02,   3.16000000e+02,
          2.74800000e+03,   4.32800000e+03,   6.24000000e+02,
          1.95000000e+02,   1.00300000e+03,   1.38430000e+04,
          2.65000000e+02,   7.19000000e+02,   3.67000000e+02,
          2.95000000e+03,   6.23590000e+04,   6.39000000e+02,
          2.77720000e+04,   1.39200000e+03,   2.13500000e+03,
          1.26600000e+03,   2.71000000e+02,   2.64900000e+03,
          1.63800000e+03,   9.24000000e+02,   4.42000000e+02,
          2.96700000e+03,   1.40000000e+02,   5.55000000e+02,
          4.49000000e+02,   9.90000000e+02,   1.09000000e+02,
          4.23100000e+03,   2.23400000e+03,   3.84000000e+02,
          1.02800000e+03,   1.20000000e+02,   1.02210000e+04,
          2.72400000e+03,   7.64000000e+02,   2.82000000e+02,
          4.28900000e+03,   1.29000000e+04,   6.11550000e+04,
          9.40000000e+01,   2.23000000e+02,   2.57000000e+02,
          4.52480000e+04,   5.03200000e+03,   4.70000000e+01,
          2.58000000e+02,   4.08000000e+02,   2.73000000e+02,
          2.01000000e+02,   3.22320000e+04,   2.88000000e+02,
          4.13000000e+02,   2.16000000e+02,   1.24580000e+04,
          9.91000000e+02,   1.02000000e+02,   3.99000000e+02,
          5.98000000e+02,   4.83500000e+03,   3.73780000e+04,
          1.73100000e+04,   5.18000000e+02,   6.40500000e+03,
          4.93900000e+03,   5.73000000e+02,   1.25000000e+02,
          6.83000000e+02,   1.02300000e+03,   1.43400000e+03,
          3.78000000e+02,   3.36000000e+02,   1.67000000e+02,
          1.72000000e+02,   5.84500000e+03,   1.74000000e+02,
          5.37000000e+02,   3.86000000e+02,   2.05000000e+02,
          1.38000000e+02,   6.29900000e+03,   2.80000000e+01,
          2.43100000e+03,   3.12100000e+03,   6.00000000e+02,
          1.20360000e+04,   4.45000000e+02,   2.68000000e+02,
          4.38070000e+04,   3.63020000e+04,   3.85000000e+02,
          7.35000000e+02,   1.50640000e+04,   1.15600000e+03,
          6.64400000e+03,   6.15000000e+02,   2.07000000e+02,
          4.19000000e+02,   1.51000000e+02,   4.24500000e+03,
          5.76000000e+02,   2.29300000e+03,   1.63400000e+03,
          1.82300000e+03,   1.48550000e+04,   2.65600000e+03,
          2.31000000e+02,   4.28180000e+04,   6.22400000e+03,
          8.96300000e+03,   9.54000000e+02,   2.62600000e+03,
          1.23000000e+03,   2.63880000e+04,   7.58000000e+02,
          3.22400000e+03,   4.39000000e+02,   3.91000000e+02,
          1.24510000e+04,   3.41000000e+02,   3.14000000e+02,
          1.51330000e+04,   3.43000000e+02,   1.71000000e+02,
          3.42300000e+03,   1.24000000e+02,   5.48000000e+02,
          1.60000000e+01,   2.56000000e+02,   1.39600000e+03,
          3.83000000e+02,   1.02000000e+03,   2.48710000e+04,
          4.86300000e+03,   2.37400000e+03,   1.36510000e+04,
          3.44000000e+02,   3.17900000e+03,   1.66000000e+02,
          1.81000000e+02,   4.54000000e+02,   3.71000000e+02,
          2.21000000e+02,   1.01800000e+03,   1.55700000e+03,
          1.30700000e+03,   5.26300000e+03,   4.02000000e+02,
          8.18000000e+02,   3.35000000e+02,   3.16600000e+03,
          4.81000000e+02,   1.04420000e+04,   1.89060000e+04,
          1.42000000e+03,   2.50000000e+02,   2.60200000e+03,
          8.21000000e+02,   4.59000000e+02,   2.78000000e+02,
          1.30000000e+02,   1.18680000e+04,   4.66000000e+02,
          1.79810000e+04,   7.93000000e+02,   1.53000000e+02,
          1.75600000e+03,   2.79000000e+02,   1.46400000e+03,
          9.25000000e+02,   3.90000000e+02,   4.50000000e+02,
          5.88200000e+03,   9.39000000e+02,   3.28000000e+02,
          5.69200000e+03,   4.29000000e+02,   5.34000000e+02,
          5.22100000e+03,   2.13000000e+02,   2.63400000e+03,
          1.53200000e+03,   5.53830000e+04,   1.25900000e+03,
          3.47000000e+02,   1.03510000e+04,   3.92100000e+03,
          1.91000000e+02,   4.61800000e+03,   3.80000000e+02,
          2.72300000e+03,   1.24500000e+03,   8.09000000e+02,
          8.89900000e+03,   7.50100000e+03,   4.58000000e+02,
          5.02180000e+04,   4.95000000e+02,   1.68450000e+04,
          3.72000000e+02,   1.01400000e+03,   1.13900000e+03,
          1.72600000e+03,   1.32560000e+04,   6.01000000e+02,
          2.35800000e+03,   5.96000000e+03,   1.37900000e+03,
          5.72100000e+03,   1.50000000e+02,   6.42900000e+03,
          3.31000000e+02,   1.90400000e+03,   2.02300000e+03,
          2.00000000e+00,   4.21000000e+02,   2.03400000e+03,
          1.36700000e+03,   1.47500000e+03,   4.09000000e+02,
          2.30700000e+03,   1.63000000e+02,   6.94100000e+03,
          4.01000000e+02,   1.32100000e+03,   1.33400000e+03,
          4.63400000e+03,   4.55000000e+02,   1.23330000e+04,
          5.81000000e+02,   1.07570000e+04,   1.50810000e+04,
          5.47000000e+02,   3.24000000e+03,   6.97000000e+02,
          3.64000000e+02,   2.33000000e+02,   5.89000000e+02,
          7.31000000e+02,   9.84600000e+03,   1.97470000e+04,
          1.47000000e+02,   2.63200000e+03,   1.00000000e+00,
          2.21800000e+04,   8.58400000e+03,   1.11400000e+03,
          2.26000000e+02,   1.35400000e+03,   5.07900000e+03,
          3.43800000e+03,   4.70920000e+04,   8.03000000e+02,
          1.40000000e+01,   3.19800000e+03,   5.34200000e+03,
          3.32990000e+04,   8.67000000e+02,   8.36000000e+02,
          8.80000000e+02,   2.22000000e+02,   1.99320000e+04,
          5.68000000e+02,   2.98000000e+02,   9.43000000e+02,
          3.29400000e+03,   7.04000000e+02,   4.64000000e+02,
          6.08900000e+03,   1.55010000e+04,   4.06000000e+02,
          1.00000000e+02,   3.00000000e+02,   1.84900000e+03,
          4.55650000e+04,   6.61000000e+03,   7.12000000e+02,
          1.75910000e+04,   1.89570000e+04,   6.21300000e+03,
          2.06200000e+03,   2.72900000e+03,   3.69300000e+03,
          1.60280000e+04,   4.86600000e+03,   4.27700000e+03,
          3.58000000e+02,   3.15800000e+04,   7.44800000e+03,
          4.12000000e+03,   1.33100000e+03,   1.33700000e+03,
          4.68400000e+03,   1.59200000e+03,   1.62000000e+02,
          9.05000000e+02,   1.21300000e+03,   5.60000000e+02,
          1.31600000e+03,   1.07700000e+03,   2.41000000e+02,
          5.52000000e+02,   1.46000000e+02,   1.88000000e+02,
          1.92620000e+04,   1.06900000e+03,   2.25000000e+02,
          9.08000000e+02,   3.24450000e+04,   2.43600000e+03,
          1.25500000e+03,   4.12000000e+02,   3.65300000e+03,
          9.79100000e+03,   3.36000000e+03,   7.66900000e+03,
          6.07580000e+04,   5.93700000e+03,   1.51780000e+04,
          6.96600000e+03,   7.53000000e+02,   1.03600000e+03,
          4.14400000e+03,   1.54800000e+03,   3.00000000e+03,
          4.77000000e+02,   2.03000000e+03,   5.41650000e+04,
          2.53900000e+03,   9.60000000e+02,   4.83000000e+02,
          1.05400000e+03,   4.72000000e+02,   1.13610000e+04,
          3.73740000e+04,   1.53500000e+03,   1.70000000e+02,
          5.27500000e+03,   3.26470000e+04,   4.47000000e+02,
          3.74300000e+03,   1.94000000e+04,   2.29800000e+03,
          1.99100000e+03,   8.07000000e+02,   1.15900000e+03,
          1.37700000e+03,   3.95000000e+02,   2.36800000e+03,
          9.81000000e+02,   1.96200000e+03,   1.55800000e+03,
          3.33570000e+04,   1.00000000e+03,   2.14100000e+03]),
 'dti': array([  27.65,    1.  ,    8.72, ...,   83.36,  266.77,   55.5 ]),
 'dti_joint': array([   nan,  15.4 ,  25.44,  21.69,  22.98,  17.51,  23.4 ,   6.44,
         32.21,  15.11,  22.48,   9.22,  23.99,   6.81,  12.99,  14.96,
         13.88,  26.76,  19.26,  16.65,  12.92,  25.35,  31.92,  21.03,
         20.2 ,   9.29,  21.43,  12.18,  27.27,  17.19,  29.23,  17.89,
         23.08,  10.15,  26.39,  22.33,   6.52,   7.87,  18.46,  23.26,
         25.77,  31.23,  11.85,  22.18,  23.24,  10.55,  15.51,  12.19,
         17.6 ,  17.08,  26.07,  17.35,  20.65,  20.12,  10.92,  17.99,
         20.16,  21.98,  11.08,  10.32,  14.59,  34.59,  18.72,  11.17,
         30.13,  22.64,  10.02,  14.09,   8.06,  18.07,  25.05,  17.22,
         28.72,  13.02,  17.14,   9.7 ,  19.86,   3.09,  20.45,  30.04,
         25.3 ,  15.16,  13.9 ,  12.  ,   9.26,  14.82,  19.65,  20.76,
         16.61,  13.48,  19.64,   8.57,  20.6 ,  29.29,  31.51,  17.52,
         10.21,  25.2 ,  10.48,   6.97,   4.55,   7.75,  25.68,  21.36,
         25.54,  21.91,   6.66,  14.36,  20.39,  16.26,  15.07,  23.79,
         27.85,  26.93,  14.92,  18.56,   9.01,   6.35,  13.67,  14.11,
         23.68,  21.54,  28.46,  27.52,  16.69,  20.42,  24.56,  24.39,
         13.16,  17.24,  18.68,  17.72,   8.34,  15.72,  26.59,  23.71,
         25.89,  24.05,  16.76,  20.06,  15.7 ,   7.78,  23.66,  20.14,
         10.61,  11.99,  22.52,  10.78,   7.59,  20.26,   7.9 ,  25.26,
         31.84,  28.15,  15.95,  13.51,  10.63,  41.59,   6.05,  31.76,
         21.65,  11.3 ,  27.56,   4.5 ,  22.84,  18.21,  26.35,  21.27,
         34.28,  30.96,  21.44,  12.2 ,  16.24,  14.1 ,  10.82,   7.09,
         10.05,  22.61,   8.04,  29.89,  14.07,  14.19,  24.66,  10.45,
         25.84,  19.13,  21.16,  20.01,  14.44,   6.15,   6.45,  17.34,
         18.57,  11.61,  16.7 ,  14.68,  16.74,  18.95,   4.84,  26.23,
         39.66,  28.93,  13.92,  22.88,  10.85,  20.81,  16.41,  19.08,
         17.11,  12.56,  19.01,  10.75,  16.2 ,  35.82,  22.22,   8.07,
         29.4 ,  26.87,  15.79,  15.75,  20.63,   7.97,  14.85,  18.93,
         20.17,  11.66,  24.57,  12.84,  18.82,  20.57,  10.51,  19.04,
         20.55,  21.02,   5.67,  22.65,  19.84,  26.74,  26.91,  16.73,
         32.63,  13.12,  20.82,  21.76,  23.52,  15.26,  24.49,  19.68,
         21.2 ,  19.51,  18.32,  27.88,  15.33,  12.43,  15.32,  29.11,
          3.48,  17.57,  22.29,  16.6 ,  19.3 ,  34.72,  12.89,  26.27,
         22.05,  11.86,  16.38,  17.07,  15.38,  26.3 ,   9.37,  26.96,
         17.7 ,  23.35,  16.47,  37.35,  14.14,  25.99,  15.92,  19.48,
         22.54,  12.11,  19.74,  24.92,   6.48,  22.59,  38.07,  26.05,
         14.15,  12.16,  20.97,  12.12,  18.06,   1.11,  27.2 ,  10.09,
         22.17,   6.11,   1.86,  20.86,  25.18,  27.39,  11.95,   6.17,
         31.11,  23.64,  24.72,  24.68,  20.47,  12.23,   5.12,  27.35,
         17.3 ,  21.94,  33.54,  14.95,  14.17,  23.6 ,  23.47,  26.29,
         16.79,  27.31,  13.27,  25.5 ,   9.71,  10.36,  20.1 ,  25.64,
         24.94,   9.67,  15.3 ,  13.1 ,  20.73,  26.53,  29.01,  20.48,
         26.7 ,  14.7 ,  38.45,  14.78,  14.54,  31.59,  24.85,  18.02,
          8.56,  13.72,  10.26,  23.22,  14.46,  17.73,   3.27,   7.15,
         21.33,  22.46,  17.9 ,  12.97,  22.72,   6.94,  23.59,  22.53,
         19.76,  13.82,  23.73,  19.33,  18.81,   8.69,  63.66,  14.91,
         33.4 ,  18.61,  24.62,  12.28,   5.26,  13.37,  34.05,  33.45,
         28.69,   8.23,  19.06,  30.66,  27.1 ,   8.38,  17.97,  33.67,
         30.77,  14.66,  21.38,  12.03,   8.8 ,   6.76,  14.5 ,  13.91,
         28.7 ,  10.03,  15.74,  20.19,  23.84,  16.5 ,  23.21,   5.64,
         14.94,  21.5 ,  33.26,   3.56,  25.02,  13.54,  21.61,  16.11,
         18.47,  13.11,  19.79,  11.18,  19.1 ,   7.26,  10.14,  21.72,
         37.95,   8.15,  24.21,  14.8 ,  14.58,  21.18,  25.27,  23.88,
         27.55,  20.05,  15.94,   9.47,  17.01,  12.54,  14.45,  16.17,
         22.39,  25.76,  11.36,  20.09,   6.14,  22.62,  24.97,  14.4 ,
         13.79,  15.99,  13.75,  19.93,  32.54,   8.73,  21.96,   9.92,
         13.33,  14.16,  16.49,  16.51,  17.81,  26.44,  13.95,  14.63,
          7.81,  14.97,  18.1 ,  24.69,  21.32,   7.08,  12.07,   6.46,
          6.72,  32.47,  10.91,  19.12,  16.53,  18.76,  23.67,  22.83,
          9.06,   5.31,  14.57,  21.8 ,  13.05,  31.35,  19.88,  22.31,
         17.28,  18.65,  15.06,  16.23,  18.27,   9.34,   9.96,  45.39,
         15.09,  26.9 ,  14.73,  25.67,  28.27,  23.23,  39.91,  13.09,
         36.02,  17.05,  24.7 ,  13.57,  21.12,  15.83,  20.94,  27.91,
         29.61,   8.95,   6.57,  10.98,  12.01,  15.9 ,  18.63,   8.74,
          5.39,  14.81,  14.64,  29.62,  11.62,   3.41,  17.36,  16.  ,
         22.4 ,  18.26,  11.51,  13.61,  10.49,  23.36,  18.59,  12.8 ,
         18.3 ,  15.03,  23.57,   8.7 ,  12.15,  25.87,  16.21,   2.95,
         19.89,  13.32,  22.37,  25.83,  22.81,  19.83,  15.25,  18.9 ,
         12.62,  33.76,  16.87,  27.13,  14.89,  28.41,  15.5 ,  25.92,
         11.79,  18.52,  10.39,  17.46,   3.12,  11.07,  27.89,  23.32,
          6.26,  18.53,  19.03,  17.95,  33.58,  11.82,  11.14,  34.48,
         31.01,  18.62,  19.57,  19.56,  23.12,  19.14,  28.35,  32.37,
         15.76,  13.46,  17.2 ,  21.42,  13.19,  48.58,  25.31,  16.62,
         26.38,  24.35,  15.87,  18.14,  26.16,   7.05,   7.36,  15.49,
         22.11,  19.15,   7.91,  24.65,  21.39,  25.01,  25.49,  25.36,
         13.62,  23.13,  43.49,  11.32,  22.66,   4.24,  15.71,  12.86,
         24.47,  21.35,  10.01,  20.51,  19.77,  25.09,  25.71,  11.1 ,
         10.38,  18.12,  26.92,  35.05,  26.75,  17.1 ,  10.64,  21.97,
         13.74,   6.63,  12.59,  14.29,  10.43,  24.77,  18.74,  29.52,
         29.75,  11.92,  19.63,  15.41,  28.26,  13.81,  14.86,  16.32,
         25.93,  14.79,   8.54,  11.23,  21.67,  27.67,  27.  ,  28.57,
         22.87,  29.09,  27.11,   6.88,  29.31,  23.49,  36.79,  25.  ,
         18.96,  18.87,  11.48,  17.  ,   2.15,   4.79,   6.33,  24.12,
         42.39,  19.75,  20.25,  18.91,   3.03,  17.06,  32.46,  17.12,
          6.59,  15.55,  21.47,  21.01,  12.74,   8.19,  33.46,  21.83,
         21.95,  20.23,  20.08,  19.95,  20.36,  15.1 ,   3.95,  18.08,
         21.58,  18.6 ,  17.92,   1.78,  11.2 ,  19.94,  29.78,  13.49,
         17.32,  19.24,  13.69,  20.3 ,  31.8 ,  25.29,  14.9 ,  25.59,
         17.8 ,  19.22,  20.32,  12.94,  28.98,  22.78,  15.63,  28.76,
         13.86,  22.01,  12.87,  17.33,  25.73,  17.65,   7.47,   9.73,
         29.8 ,  14.35,  35.87,  39.82,  13.7 ,  22.08,  10.93,  24.76,
         20.49,  19.69,  20.74,  22.27,  13.06,  24.9 ,  27.79,  27.38,
         28.32,  19.98,  23.03,  20.33,  12.88,  21.19,  10.42,  19.31,
         18.19,  14.62,   8.2 ,  20.98,  24.89,   5.09,  21.24,  16.03,
         18.04,  21.41,  11.54,  22.93,  16.84,  13.66,  25.4 ,  17.67,
         15.42,  19.44,  14.75,  30.24,   8.94,  10.2 ,  11.31,  22.85,
         25.79,  29.3 ,  14.12,  26.14,  16.93,  14.99,  20.7 ,  22.95,
         22.41,  27.42,  20.59,  14.27,  11.4 ,  22.71,  34.6 ,  15.62,
         20.91,  22.15,  20.4 ,  20.99,  24.46,  20.34,  14.33,  23.94,
         17.94,  11.83,  27.32,  12.25,  15.6 ,  31.74,  23.46,   9.62,
         13.89,   6.36,  17.29,  28.84,  21.6 ,  12.67]),
 'earliest_cr_line': [Jan-1985, Apr-1999, Nov-2001, Feb-1996, Jan-1996, ..., Aug-2013, Jun-2013, Oct-2013, Sep-2013, Nov-2013]
 Length: 697
 Categories (697, object): [Jan-1985, Apr-1999, Nov-2001, Feb-1996, ..., Jun-2013, Oct-2013, Sep-2013, Nov-2013],
 'emp_length': [10+ years, < 1 year, 1 year, 3 years, 8 years, ..., 5 years, 6 years, 2 years, 7 years, n/a]
 Length: 12
 Categories (12, object): [10+ years, < 1 year, 1 year, 3 years, ..., 6 years, 2 years, 7 years, n/a],
 'funded_amnt': array([  5000.,   2500.,   2400., ...,  36625.,  38375.,  39675.]),
 'funded_amnt_inv': array([  4975.,   2500.,   2400., ...,  36625.,  38375.,  39675.]),
 'grade': [B, C, A, E, F, D, G]
 Categories (7, object): [B, C, A, E, F, D, G],
 'home_ownership': [RENT, OWN, MORTGAGE, OTHER, NONE, ANY]
 Categories (6, object): [RENT, OWN, MORTGAGE, OTHER, NONE, ANY],
 'il_util': array([  nan,   58.,   51.,   97.,   84.,   73.,   63.,   74.,   94.,
          75.,   76.,   30.,   52.,   81.,   42.,   91.,   22.,   43.,
          64.,   70.,   86.,   96.,  106.,   34.,   87.,   62.,   90.,
          55.,   65.,   85.,   99.,   92.,    0.,   38.,   80.,   82.,
          23.,   57.,   83.,   48.,   61.,   88.,   93.,   89.,   60.,
          27.,   77.,   98.,   69.,   68.,   78.,   35.,  100.,  109.,
          39.,   53.,   71.,   95.,   59.,   37.,   33.,   44.,   26.,
          67.,   41.,   66.,   45.,  122.,  101.,   46.,   49.,   16.,
         150.,   72.,    6.,   31.,   50.,    3.,   19.,   40.,   79.,
         111.,  105.,  151.,   56.,  121.,    8.,   54.,   14.,  112.,
         120.,  125.,  118.,  124.,   47.,    7.,   18.,    5.,  104.,
         108.,   17.,   21.,  117.,   28.,  126.,   29.,   15.,   13.,
         107.,  103.,    9.,  110.,  149.,   10.,   24.,   12.,  115.,
         147.,  116.,   32.,   36.,  114.,  102.,  119.,  129.,   25.,
           2.,  143.,   20.,  137.,    1.,  135.,  130.,  171.,  127.,
         113.,  176.,  139.,   11.,  128.,  159.,  173.,  138.,  133.,
           4.,  132.,  136.,  123.,  131.,  174.,  160.,  155.,  140.,
         152.,  142.,  234.,  154.,  134.,  162.,  153.,  193.,  156.,
         141.,  145.,  146.,  208.,  175.,  158.,  161.,  144.,  184.,
         148.,  163.,  165.,  157.,  166.,  189.,  186.]),
 'initial_list_status': [f, w]
 Categories (2, object): [f, w],
 'inq_fi': array([ nan,   1.,   2.,   0.,   4.,   5.,   3.,   6.,  16.,   9.,   7.,
         10.,  13.,  11.,  12.,   8.,  15.,  20.,  18.,  14.,  24.,  19.,
         23.,  28.,  17.,  21.,  22.]),
 'inq_last_12m': array([ nan,   1.,   5.,   3.,   6.,   0.,   2.,   7.,   9.,   4.,  10.,
         14.,  16.,   8.,  20.,  11.,  15.,  13.,  19.,  17.,  12.,  18.,
         30.,  25.,  21.,  32.,  27.,  23.,  26.,  22.,  24.,  31.,  29.,
         28.]),
 'inq_last_6mths': array([  1.,   5.,   2.,   0.,   3.,   4.,   6.,   7.,   8.,   9.,  10.,
         11.,  12.,  15.,  14.,  33.,  17.,  32.,  24.,  13.,  18.,  16.,
         31.,  28.,  25.,  27.,  20.,  19.,  nan]),
 'installment': array([  162.87,    59.83,    84.33, ...,   913.75,   502.75,  1272.39]),
 'int_rate': array([ 10.65,  15.27,  15.96,  13.49,  12.69,   7.9 ,  18.64,  21.28,
         14.65,   9.91,  16.29,   6.03,  11.71,  12.42,  14.27,  16.77,
          7.51,   8.9 ,  18.25,   6.62,  19.91,  17.27,  17.58,  21.67,
         19.42,  22.06,  20.89,  20.3 ,  23.91,  19.03,  23.52,  23.13,
         22.74,  22.35,  24.11,   6.  ,  22.11,   7.49,  11.99,   5.99,
         10.99,   9.99,  18.79,  11.49,   8.49,  15.99,  16.49,   6.99,
         12.99,  15.23,  14.79,   5.42,  10.59,  17.49,  15.62,  21.36,
         19.29,  13.99,  18.39,  16.89,  17.99,  20.62,  20.99,  22.85,
         19.69,  20.25,  23.22,  21.74,  22.48,  23.59,  12.62,  18.07,
         11.63,   7.91,   7.42,  11.14,  20.2 ,  12.12,  19.39,  16.11,
         17.54,  22.64,  13.84,  16.59,  17.19,  12.87,  20.69,   9.67,
         21.82,  19.79,  18.49,  22.94,  24.59,  24.4 ,  21.48,  14.82,
         14.17,   7.29,  17.88,  20.11,  16.02,  17.51,  13.43,  14.91,
         13.06,  15.28,  15.65,  17.14,  11.11,  10.37,  16.4 ,   7.66,
         10.  ,  18.62,  10.74,   5.79,   6.92,   9.63,  14.54,  12.68,
         19.36,  13.8 ,  18.99,  21.59,  20.85,  21.22,  19.74,  20.48,
          6.91,  12.23,  12.61,  10.36,   6.17,   6.54,   9.25,  16.69,
         15.95,   8.88,  13.35,   9.62,  16.32,  12.98,  14.83,  13.72,
         14.09,  14.46,  20.03,  17.8 ,  15.2 ,  15.57,  18.54,  19.66,
         17.06,  18.17,  17.43,  20.4 ,  20.77,  18.91,  21.14,  17.44,
         13.23,   7.88,  11.12,  13.61,  10.38,  17.56,  17.93,  15.58,
         13.98,  14.84,  15.21,   6.76,   6.39,  11.86,   7.14,  14.35,
         16.82,  10.75,  14.72,  16.45,  18.67,  20.53,  19.41,  20.16,
         21.27,  18.3 ,  19.04,  20.9 ,  21.64,  12.73,  10.25,  13.11,
         10.62,  13.48,  14.59,  16.07,  15.7 ,   9.88,  11.36,  15.33,
         13.85,  14.96,  14.22,   7.74,  13.22,  13.57,   8.59,  17.04,
         14.61,   8.94,  12.18,  11.83,  11.48,  16.35,  13.92,  15.31,
         14.26,  19.13,  12.53,  16.7 ,  16.  ,  17.39,  18.09,   7.4 ,
         18.43,  17.74,   7.05,  20.52,  20.86,  19.47,  18.78,  21.21,
         19.82,  20.17,  13.16,   8.  ,  13.47,  12.21,  16.63,   9.32,
         12.84,  11.26,  15.68,  15.37,  10.95,  11.89,  14.11,  13.79,
          7.68,  11.58,   7.37,  16.95,  15.05,  18.53,  14.74,  14.42,
         18.21,  17.26,  18.84,  17.9 ,  19.16,  13.67,   9.38,  12.72,
         13.36,  11.46,  10.51,   9.07,  13.04,  11.78,  12.41,  10.83,
         12.09,  17.46,  14.3 ,  17.15,  15.25,  10.2 ,  15.88,  14.93,
         16.2 ,  18.72,  14.62,   8.32,  14.12,  10.96,  10.33,  10.01,
         12.86,  11.28,  11.59,   8.63,  12.54,  12.22,  11.91,  15.38,
         16.96,  13.17,   9.7 ,  16.33,  14.75,  15.07,  16.01,  10.71,
         10.64,   9.76,  11.34,  10.39,  13.87,  11.03,  11.66,  13.24,
         10.08,   9.45,  13.55,  12.29,  11.97,  12.92,  15.45,  14.5 ,
         14.18,  15.13,  16.08,  15.76,  17.03,  17.34,  16.71,   9.83,
         13.62,  10.46,   9.51,   9.2 ,  13.3 ,  10.78,   7.75,   8.38,
         12.36,  12.67,  11.72,  13.93,   8.07,   7.43,  12.04,  14.25,
         14.88,  11.41,  11.09,  10.14,  16.15,  15.83,   7.12,  18.36,
          9.64,   9.96,  11.22,   9.01,   9.33,  11.54,  12.17,  12.8 ,
         14.38,  13.75,  14.7 ,  12.49,  14.07,  10.91,  13.12,  10.28,
          8.7 ,  14.67,  15.01,  17.78,  16.83,  17.59,  14.43,  16.65,
         17.91,  17.28,  18.86,  18.61,  17.66,  18.29,  17.97,  18.04,
         14.57,  17.72,  17.09,  15.51,  16.46,  17.41,  17.22,  16.91,
         16.28,  17.86,   7.62,  14.98,  13.53,  12.85,  14.47,  16.24,
         15.61,  19.97,  20.5 ,  19.22,  22.9 ,  23.7 ,  17.57,  23.4 ,
         16.99,  25.89,  22.4 ,  25.8 ,  24.99,  24.08,  25.99,  25.57,
         26.06,  24.5 ,  25.83,  17.76,  15.1 ,  18.55,  21.7 ,  17.1 ,
         19.52,  19.2 ,  23.1 ,  21.  ,   6.97,   8.6 ,  11.55,  13.68,
         15.22,   9.71,  14.33,  22.7 ,  22.2 ,  16.78,  18.85,  13.05,
         23.5 ,  21.6 ,  12.35,  24.89,  21.15,  20.8 ,  20.31,  25.28,
         18.75,  19.05,  15.8 ,  10.16,  19.72,  23.76,  17.77,  23.28,
         20.49,  21.98,  24.7 ,  23.83,  23.63,  22.95,  22.47,  21.49,
         24.83,  21.97,  15.81,  22.45,  22.78,  23.33,  19.99,  24.2 ,
         24.76,  24.33,  23.26,  24.52,  14.28,  19.89,   9.17,   5.32,
         24.24,  14.85,  15.77,   6.49,   9.8 ,  12.88,  19.48,  27.49,
         13.44,  28.49,  25.09,  28.99,  16.55,  26.99,  14.48,  15.41,
         13.18,  12.59,   6.24,  21.99,  18.2 ,  27.88,   7.89,   6.89,
         23.99,   7.26,  22.99,  27.31,  26.77,  12.05,   8.18,  11.53,
         13.33,  19.19,  25.78,   5.93,   6.68,   8.19,  19.24,   8.67,
         11.44,   9.49,  13.66,  12.39,  15.59,  14.31,  14.99,  10.49,
          7.69,  14.49,  10.15,   8.39,  22.15,  11.67,  18.24,  23.43,
         13.65,  21.18,  14.64,  14.16,  18.92,   7.39,   9.75,  11.47,
          9.16,  19.53,  20.75,  28.34,  26.57,  28.14,  28.67,  25.88,
         27.34,  27.99,  24.49,  26.49,  22.39,  12.79,  25.69,  25.29,
          7.99,   7.59,   8.99,  28.88,  28.18,  29.96,  27.79,  29.67,
         23.32,  25.11,  26.14,  25.44,  30.99,  25.65,  12.74,   8.24,
         11.39,  28.69,  25.49,   7.24,  26.24,  29.49,  29.99,  24.74,
         30.89,  30.79,  30.49,  30.84,  30.74,  30.94]),
 'issue_d': [Dec-2011, Nov-2011, Oct-2011, Sep-2011, Aug-2011, ..., Aug-2016, Jul-2016, Dec-2016, Nov-2016, Oct-2016]
 Length: 115
 Categories (115, object): [Dec-2011, Nov-2011, Oct-2011, Sep-2011, ..., Jul-2016, Dec-2016, Nov-2016, Oct-2016],
 'loan_amnt': array([  5000.,   2500.,   2400., ...,  36625.,  38375.,  39675.]),
 'loan_status': [Fully Paid, Late]
 Categories (2, object): [Fully Paid, Late],
 'max_bal_bc': array([    nan,   8937.,    653., ...,  37423.,  15313.,  22031.]),
 'mo_sin_old_il_acct': array([  nan,  123.,  125.,  117.,  173.,   67.,  124.,  104.,  129.,
         179.,  146.,  111.,    2.,  147.,  243.,  115.,  164.,  160.,
          98.,  188.,  162.,  159.,  235.,  138.,   38.,  133.,  137.,
         101.,  143.,  199.,   16.,  153.,  113.,  165.,  141.,  154.,
         291.,  106.,  116.,  142.,  217.,  161.,  131.,  157.,  118.,
         134.,  152.,   20.,  206.,  163.,   52.,   29.,  122.,  114.,
          93.,  103.,  172.,  151.,  150.,  168.,  192.,  110.,   28.,
         213.,  140.,   85.,   44.,  258.,  191.,  158.,  148.,  187.,
         218.,  126.,   40.,  112.,   19.,   43.,  167.,  119.,  128.,
         145.,  109.,  149.,   64.,   78.,   42.,  227.,   90.,  127.,
         170.,   88.,  166.,   87.,  100.,   91.,   74.,  136.,  259.,
         107.,   18.,  135.,   49.,   92.,  197.,   75.,   99.,   55.,
         108.,   12.,  120.,  210.,  121.,  300.,  132.,  183.,   51.,
         205.,  184.,   30.,   77.,   62.,  105.,   97.,  171.,   96.,
         261.,  195.,  130.,  139.,  364.,   39.,  155.,  234.,   10.,
         193.,  363.,  196.,   70.,   32.,  208.,   31.,   86.,   59.,
         304.,    7.,   89.,  190.,   41.,  228.,   66.,   54.,  219.,
         303.,   82.,   60.,  265.,   23.,   65.,   45.,   50.,  207.,
         280.,   73.,   26.,  232.,  156.,    4.,  180.,   79.,  185.,
         169.,  203.,  175.,   57.,   34.,  252.,   72.,   33.,  216.,
         241.,   46.,  209.,   17.,   58.,   81.,  225.,  176.,  230.,
         292.,   84.,   63.,   21.,   69.,   61.,   37.,   94.,  144.,
         178.,  224.,  214.,    9.,   53.,   11.,   95.,  102.,   80.,
         221.,  244.,   71.,  267.,   25.,  204.,  222.,   48.,   76.,
         174.,  220.,  211.,   14.,  268.,  327.,   68.,    1.,  264.,
         340.,  215.,  181.,  248.,   83.,  231.,   24.,    8.,   15.,
         263.,  283.,   35.,  251.,  279.,   47.,  255.,  177.,    6.,
          27.,   56.,  182.,   36.,   22.,  269.,  198.,  226.,  278.,
         239.,    5.,  201.,  286.,  194.,  257.,  242.,  298.,  249.,
         200.,  266.,   13.,  238.,  297.,  254.,  296.,  253.,    0.,
         186.,  202.,  290.,  312.,  302.,  245.,  348.,  350.,  212.,
         189.,  237.,  262.,  236.,  315.,  256.,  295.,  275.,  250.,
         386.,  272.,  314.,  317.,  233.,  229.,    3.,  359.,  322.,
         271.,  288.,  223.,  246.,  385.,  289.,  240.,  277.,  294.,
         357.,  260.,  299.,  325.,  324.,  339.,  323.,  316.,  281.,
         399.,  338.,  274.,  301.,  273.,  360.,  456.,  333.,  393.,
         282.,  346.,  285.,  284.,  362.,  247.,  270.,  432.,  293.,
         371.,  329.,  287.,  310.,  405.,  276.,  334.,  409.,  313.,
         372.,  353.,  369.,  328.,  349.,  442.,  308.,  305.,  383.,
         397.,  387.,  395.,  307.,  326.,  443.,  306.,  382.,  337.,
         347.,  408.,  446.,  354.,  394.,  365.,  321.,  318.,  343.,
         351.,  319.,  438.,  311.,  361.,  344.,  341.,  415.,  309.,
         384.,  336.,  420.,  396.,  373.,  374.,  491.,  335.,  342.,
         401.,  380.,  355.,  377.,  407.,  477.,  376.,  368.,  331.,
         412.,  366.,  320.,  352.,  410.,  379.,  411.,  330.,  413.,
         406.,  367.,  332.,  476.,  392.,  434.,  404.,  370.,  375.,
         345.,  378.,  400.,  356.,  421.,  649.,  429.,  388.,  651.,
         455.,  381.,  391.,  433.,  427.,  519.,  724.,  441.,  358.,
         416.,  463.,  640.,  452.,  474.,  436.,  390.,  720.,  422.,
         424.,  509.,  469.,  402.,  483.,  448.,  447.,  398.,  478.,
         471.,  425.,  507.,  470.,  423.,  545.,  490.,  417.,  428.,
         414.,  482.,  418.,  439.,  465.,  426.,  403.,  437.,  389.,
         472.,  506.,  459.,  451.,  494.]),
 'mo_sin_old_rev_tl_op': array([  nan,   48.,  118.,  229.,  326.,  193.,  150.,   83.,  182.,
         220.,  269.,  299.,  237.,  103.,  257.,  189.,  290.,  186.,
          38.,  271.,  139.,  202.,  115.,  240.,  188.,  238.,  144.,
          92.,  358.,   86.,  421.,  336.,  180.,  117.,  232.,  243.,
         285.,  204.,  381.,  107.,  275.,   40.,   99.,  168.,  123.,
         213.,   88.,  177.,  169.,   80.,  294.,   68.,  293.,  136.,
          76.,  100.,  106.,  194.,  149.,  141.,  178.,  224.,  210.,
         246.,  111.,   37.,  114.,  233.,  145.,  276.,  108.,   69.,
         158.,  121.,  147.,  179.,  154.,  260.,  361.,   97.,  214.,
          42.,  265.,  134.,  148.,  396.,  163.,   77.,  207.,   98.,
         223.,  167.,  206.,   84.,  119.,  160.,  349.,  174.,  474.,
          53.,  268.,  313.,   64.,  112.,  261.,  142.,  230.,  416.,
          79.,  156.,  284.,  133.,  231.,  181.,  264.,  184.,  146.,
         228.,   89.,  247.,  197.,  221.,  138.,   47.,  323.,   62.,
         185.,   93.,   41.,  126.,  350.,   94.,   60.,  314.,   87.,
         209.,   58.,  353.,  135.,  153.,  241.,  166.,   82.,  190.,
         491.,  208.,  192.,  128.,   51.,  110.,  458.,  325.,  211.,
         102.,   31.,  244.,  130.,  104.,  373.,  253.,  422.,  162.,
         248.,  453.,  116.,  388.,  267.,  236.,  129.,  191.,  124.,
         109.,  286.,  157.,  360.,  296.,  312.,  418.,  101.,  120.,
         200.,  201.,   85.,  131.,  438.,  333.,  295.,  137.,  105.,
         140.,  234.,  283.,  298.,   96.,   63.,  225.,  152.,   32.,
         303.,  409.,  252.,  203.,   56.,  159.,   33.,  227.,  389.,
         212.,  125.,  226.,  161.,  254.,  170.,  324.,   59.,  173.,
         363.,   70.,  274.,  195.,   90.,  176.,   71.,  398.,  183.,
          61.,   67.,  297.,  390.,  196.,  431.,  292.,  132.,  311.,
         205.,  143.,   74.,  266.,  218.,  219.,  113.,  171.,  216.,
         320.,  155.,  309.,  280.,  436.,  165.,  440.,  255.,  222.,
          73.,  122.,  371.,  250.,  291.,   43.,  235.,  164.,  199.,
         273.,  327.,   18.,  368.,  175.,   50.,   39.,  317.,  330.,
         245.,  444.,   95.,  352.,  332.,  424.,  172.,  316.,  239.,
         307.,  151.,  385.,  242.,  354.,   49.,   81.,  304.,  380.,
          65.,  281.,  342.,   52.,  288.,  337.,  556.,   27.,  432.,
         321.,  278.,   54.,  537.,  127.,   15.,  198.,  277.,  425.,
         259.,  415.,  557.,  272.,  334.,  329.,   91.,   78.,  376.,
         287.,  339.,   66.,  366.,   29.,  302.,  318.,  328.,  251.,
          23.,  503.,  439.,   44.,  215.,  531.,  359.,  441.,   57.,
         217.,  305.,  343.,  270.,   28.,  355.,  394.,  498.,   75.,
         256.,  335.,   46.,  187.,   72.,  331.,  387.,  395.,  357.,
          20.,  407.,  346.,  393.,  356.,  465.,  548.,  419.,  310.,
         263.,  282.,  369.,  365.,   34.,   35.,  279.,   21.,  414.,
         538.,  476.,   36.,  445.,  308.,  351.,  364.,  249.,   45.,
         319.,  262.,  449.,  455.,  300.,  443.,  427.,  446.,  404.,
         370.,  301.,  525.,   13.,  289.,   16.,  460.,  372.,   55.,
          30.,  490.,  386.,  406.,  518.,  362.,  384.,  374.,  258.,
         340.,  494.,  442.,  379.,  430.,  524.,  378.,  435.,  408.,
         345.,  338.,  452.,  533.,  322.,  397.,  480.,  635.,  479.,
          19.,  391.,  341.,  528.,  315.,   26.,  483.,  433.,   22.,
         535.,  614.,  594.,  344.,  462.,  402.,  411.,  466.,  413.,
          25.,  620.,  420.,  383.,  471.,  459.,  482.,  464.,  423.,
         484.,  523.,  470.,  429.,  448.,  501.,  558.,  567.,  544.,
         400.,  348.,  549.,  475.,   14.,  447.,  403.,  487.,  367.,
         451.,  477.,  546.,  347.,  450.,  401.,  502.,  578.,  461.,
         426.,  492.,  485.,  521.,  410.,  547.,  569.,  511.,  382.,
         306.,  412.,  512.,   24.,  585.,  499.,  467.,  399.,  513.,
         508.,  437.,  478.,  500.,  463.,  392.,  684.,  488.,  434.,
         493.,  504.,  570.,  481.,  599.,  375.,  377.,  473.,  559.,
         428.,  454.,  489.,  495.,  562.,  611.,  517.,  563.,  472.,
         405.,  505.,  456.,  469.,   17.,  554.,  468.,  601.,  534.,
         540.,  457.,  555.,  519.,  622.,  536.,  496.,  486.,  509.,
         497.,  623.,  529.,  565.,  572.,  515.,  417.,  506.,  580.,
         552.,  527.,  582.,  589.,  588.,  520.,  510.,  539.,  526.,
         551.,  507.,  564.,  550.,  571.,  597.,  645.,  561.,  522.,
         643.,  560.,  514.,  573.,  609.,  543.,  681.,  579.,  586.,
         568.,  545.,  541.,  532.,  596.,  728.,  656.,  612.,  566.,
         553.,  583.,  610.,  587.,  626.,  542.,  602.,  615.,  576.,
         613.,  642.,  592.,  654.,  590.,  581.,  593.,    7.,  530.,
         644.,  649.,  617.,  708.,  574.,  605.,  705.,  603.,  616.,
         630.,   12.,  516.,  730.,  640.,  760.,  577.,  627.,  639.,
         607.,  575.,    5.,  698.,  632.,  682.,  637.,  638.,  744.,
         600.,  659.,  658.,  595.,  633.,  631.,  584.,  655.,    6.,
         636.,  686.,  647.,  674.,  608.,  726.,  619.,  598.,  624.,
         591.,   10.,    8.,  657.,  606.,  666.,  695.,  769.,  673.,
         691.,  618.,  665.,    9.,  714.,  625.,   11.,  604.,  653.,
         629.,  672.,  711.,  663.,  650.,  775.,  669.,  641.,  670.,
         757.,    4.,  732.,  768.,  621.,  634.,  661.,  717.,  700.,
         724.,  842.,  761.,  793.,  668.,  734.,  731.,  758.,  662.,
         648.,  687.,  628.]),
 'mo_sin_rcnt_rev_tl_op': array([  nan,    1.,   10.,    5.,   16.,    4.,   11.,   12.,   25.,
          14.,   18.,   20.,   24.,    7.,   23.,    0.,   17.,    8.,
          29.,    2.,    6.,   13.,    9.,  142.,    3.,   30.,   36.,
          69.,   39.,   50.,   42.,   37.,   27.,   22.,   15.,   21.,
          65.,   19.,   31.,   55.,   63.,   67.,   59.,   26.,   32.,
         106.,   33.,   44.,   46.,   87.,   53.,   96.,   77.,   35.,
          56.,   57.,   45.,   41.,   49.,   28.,   60.,   72.,   58.,
          66.,   40.,   79.,   43.,   47.,  117.,   73.,   54.,   75.,
          38.,   70.,  113.,   61.,   52.,   74.,   91.,   51.,   82.,
          81.,   62.,  126.,   68.,   76.,   84.,   34.,  108.,  102.,
         221.,   89.,   64.,   48.,   71.,   88.,  111.,  134.,   99.,
          86.,   93.,  151.,  137.,   97.,   80.,   78.,   83.,  128.,
         103.,   90.,  228.,  109.,  124.,  127.,  101.,   95.,  114.,
         118.,   85.,  119.,  146.,  104.,  120.,  100.,  145.,  110.,
          94.,  211.,  122.,   92.,  144.,  149.,  112.,  107.,  135.,
         153.,  210.,   98.,  181.,  143.,  136.,  115.,  139.,  132.,
         156.,  150.,  116.,  125.,  157.,  105.,  193.,  141.,  148.,
         159.,  192.,  188.,  131.,  130.,  160.,  121.,  129.,  123.,
         158.,  133.,  155.,  152.,  165.,  163.,  167.,  182.,  138.,
         168.,  197.,  178.,  164.,  174.,  166.,  171.,  180.,  315.,
         254.,  154.,  290.,  147.,  186.,  195.,  196.,  201.,  173.,
         140.,  175.,  241.,  161.,  184.,  183.,  304.,  176.,  177.,
         224.,  236.,  187.,  179.,  170.,  223.,  162.,  202.,  194.,
         205.,  297.,  372.,  302.,  217.,  239.,  190.,  172.,  218.,
         189.,  208.,  253.,  258.,  169.,  219.,  200.,  267.,  199.,  225.]),
 'mo_sin_rcnt_tl': array([  nan,    1.,    9.,    2.,    6.,    4.,   11.,   12.,   25.,
          14.,    7.,    3.,   13.,    8.,    0.,   17.,   27.,    5.,
          24.,   16.,   20.,   69.,   30.,   21.,   10.,   15.,   29.,
          19.,   55.,   50.,   33.,   23.,   22.,   26.,   18.,   31.,
          49.,   32.,   35.,   36.,   40.,   63.,   46.,   57.,   47.,
          65.,   39.,   44.,   28.,   41.,   53.,   75.,   73.,   43.,
          37.,   48.,   76.,   84.,   59.,   38.,  102.,   68.,   45.,
          34.,   42.,   51.,   78.,   54.,   89.,   77.,   66.,   52.,
          79.,   70.,   87.,   80.,   67.,   64.,   62.,   61.,   60.,
         113.,   82.,   56.,  119.,   58.,   88.,   90.,   81.,   71.,
         211.,   74.,   72.,  101.,   94.,   83.,  121.,   86.,   95.,
          97.,   85.,   99.,   98.,   93.,  106.,  117.,   91.,  111.,
         124.,  116.,  100.,  127.,   96.,  114.,  107.,  118.,  105.,
         148.,  109.,  143.,   92.,  104.,  122.,  174.,  137.,  108.,
         166.,  192.,  133.,  197.,  120.,  110.,  130.,  154.,  135.,
         131.,  140.,  147.,  115.,  176.,  151.,  139.,  136.,  162.,
         103.,  144.,  145.,  194.,  132.,  125.,  112.]),
 'mort_acc': array([ nan,   0.,   1.,   5.,   4.,   3.,   6.,  10.,   7.,   2.,  11.,
          8.,   9.,  14.,  15.,  12.,  13.,  19.,  24.,  17.,  18.,  16.,
         31.,  27.,  20.,  30.,  25.,  23.,  22.,  29.,  21.,  32.,  34.,
         28.,  26.,  37.]),
 'mths_since_last_delinq': array([  nan,   35.,   38.,   61.,    8.,   20.,   18.,   68.,   45.,
          48.,   41.,   40.,   74.,   25.,   53.,   39.,   10.,   26.,
          56.,   77.,   28.,   52.,   24.,   16.,   60.,   54.,   23.,
           9.,   11.,   13.,   65.,   19.,   80.,   22.,   59.,   79.,
          44.,   64.,   57.,   14.,   63.,   49.,   15.,   73.,   70.,
          29.,   51.,    5.,   75.,   55.,    2.,   30.,   47.,   69.,
           4.,   43.,   33.,   21.,   27.,   46.,   81.,   78.,   82.,
          31.,   76.,   62.,   72.,   42.,   50.,    3.,   12.,   67.,
          36.,   34.,   58.,   17.,   71.,   66.,   32.,    6.,   37.,
           7.,    1.,   83.,   86.,  115.,   96.,  103.,  120.,  106.,
          89.,  107.,   85.,   97.,   95.,    0.,  110.,   84.,  135.,
          88.,   87.,  122.,   91.,  146.,  134.,  114.,   99.,   93.,
         127.,  101.,   94.,  102.,  129.,  113.,  139.,  131.,  143.,
         109.,  119.,  149.,  118.,  130.,   90.,  141.,  116.,  148.,
         100.,  152.,   98.,   92.,  108.,  105.,  112.,  125.,  176.,
         137.,  121.,  133.,  104.,  140.,  151.,  159.,  117.,  132.,  111.]),
 'mths_since_last_record': array([  nan,  113.,  105.,   97.,   33.,   93.,   52.,   85.,   90.,
          91.,  114.,   92.,  117.,   87.,   45.,   83.,  118.,   38.,
         101.,  100.,  112.,  110.,   88.,   79.,   77.,  107.,  102.,
          98.,   95.,  103.,   96.,  116.,  111.,   89.,  108.,   29.,
         106.,  115.,   53.,   86.,   57.,   63.,   94.,  109.,   99.,
         104.,   76.,   61.,   28.,   23.,   75.,   47.,   82.,   21.,
          62.,   44.,   80.,   67.,  119.,   42.,   34.,   66.,   58.,
          22.,   56.,   72.,   64.,   50.,   69.,   49.,   74.,   35.,
          12.,   26.,   78.,   54.,   37.,   73.,   11.,   31.,   59.,
          32.,   81.,   68.,   55.,   39.,   51.,   70.,   30.,   41.,
          71.,   40.,   43.,   27.,   65.,   46.,   19.,   17.,   25.,
          13.,   48.,   36.,    7.,   60.,   14.,    6.,   18.,    0.,
          20.,  120.,  129.,    5.,   24.,   15.,   84.,   10.,   16.,
           8.,    9.,    3.,  121.,    4.,    1.,    2.]),
 'mths_since_rcnt_il': array([  nan,   13.,   19.,    3.,   14.,   18.,    9.,   21.,   47.,
          91.,    6.,   24.,   17.,   16.,    7.,    5.,   25.,   12.,
          50.,    8.,    1.,   32.,  141.,    2.,   29.,   28.,   15.,
          27.,   31.,   26.,   20.,  118.,   10.,    4.,   30.,   36.,
          22.,   55.,  129.,   23.,  100.,   43.,  230.,  114.,   90.,
          61.,   44.,   11.,  131.,   52.,   45.,   33.,   62.,   35.,
          95.,   81.,  103.,  117.,   60.,   37.,   38.,   39.,  113.,
          86.,   82.,   51.,   68.,   42.,   88.,   83.,   67.,  101.,
         158.,   40.,   89.,   97.,   98.,   64.,   69.,  147.,  149.,
          34.,   73.,    0.,   99.,   77.,  115.,   92.,  138.,   46.,
         123.,  122.,  139.,   72.,   56.,   94.,   63.,   41.,  108.,
         107.,   54.,  127.,   48.,   70.,   80.,  165.,  112.,   71.,
          57.,  137.,  134.,  128.,  174.,  105.,   84.,  124.,   96.,
          78.,   87.,  110.,   49.,  132.,  125.,   74.,  121.,  153.,
         144.,   59.,   66.,  104.,  152.,   79.,   65.,  202.,  244.,
          76.,  148.,   85.,   58.,   93.,   75.,  201.,  161.,  219.,
         211.,  140.,  126.,  159.,  116.,  133.,  130.,   53.,  136.,
         325.,  142.,  170.,  102.,  120.,  160.,  204.,  162.,  157.,
         146.,  106.,  212.,  119.,  150.,  135.,  169.,  181.,  109.,
         151.,  111.,  255.,  168.,  178.,  245.,  145.,  231.,  154.,
         242.,  179.,  246.,  156.,  163.,  172.,  243.,  192.,  171.,
         200.,  209.,  166.,  164.,  183.,  167.,  173.,  143.,  260.,
         186.,  221.,  184.,  189.,  187.,  206.,  155.,  176.,  263.,
         177.,  257.,  309.,  227.,  193.,  196.,  191.,  248.,  213.,
         288.,  268.,  182.,  366.,  279.,  188.,  217.]),
 'mths_since_recent_bc': array([  nan,    1.,   10.,    5.,   16.,   85.,   11.,   12.,   25.,
          18.,   20.,   38.,    7.,   24.,    0.,   17.,   14.,    8.,
          15.,   29.,    6.,   31.,   27.,   26.,   19.,    9.,   13.,
         142.,  136.,   30.,   33.,    3.,   65.,   36.,  102.,   39.,
          22.,   50.,    2.,   45.,   77.,   90.,   23.,   97.,   21.,
          37.,   72.,   70.,   82.,    4.,   78.,   62.,   84.,   74.,
          44.,   35.,  129.,   76.,   47.,   55.,  109.,   63.,   87.,
          83.,   89.,   88.,   28.,   59.,   69.,   32.,  106.,   40.,
          66.,   54.,   93.,   60.,   68.,  108.,   86.,   49.,   46.,
          53.,   41.,   71.,  114.,   91.,  139.,   80.,   79.,   43.,
          95.,   56.,   58.,   57.,  100.,   73.,   64.,   51.,   52.,
          42.,  112.,   67.,  137.,  134.,  117.,   75.,   61.,  115.,
         113.,  118.,   48.,  140.,  216.,  116.,   81.,  107.,   34.,
          98.,  104.,   99.,  151.,  132.,  156.,  194.,  103.,  254.,
          96.,  143.,  101.,  105.,   92.,  135.,  146.,  221.,  174.,
         138.,  220.,  124.,  204.,  119.,  111.,   94.,  191.,  163.,
         158.,  121.,  110.,  122.,  126.,  170.,  152.,  125.,  130.,
         128.,  295.,  206.,  224.,  183.,  154.,  133.,  329.,  363.,
         228.,  145.,  213.,  291.,  123.,  169.,  157.,  197.,  153.,
         190.,  205.,  167.,  120.,  188.,  144.,  211.,  207.,  255.,
         181.,  210.,  296.,  141.,  164.,  243.,  175.,  320.,  171.,
         226.,  235.,  185.,  283.,  315.,  150.,  201.,  149.,  449.,
         459.,  348.,  196.,  223.,  312.,  147.,  162.,  155.,  160.,
         270.,  127.,  161.,  276.,  131.,  267.,  189.,  192.,  176.,
         227.,  292.,  166.,  231.,  177.,  208.,  168.,  288.,  238.,
         502.,  159.,  179.,  290.,  148.,  209.,  274.,  193.,  252.,
         182.,  245.,  275.,  327.,  240.,  172.,  303.,  187.,  202.,
         242.,  232.,  225.,  237.,  398.,  285.,  300.,  261.,  199.,
         173.,  198.,  219.,  222.,  178.,  180.,  200.,  165.,  250.,
         263.,  284.,  306.,  239.,  417.,  230.,  554.,  383.,  420.,
         339.,  215.,  229.,  277.,  317.,  195.,  251.,  186.,  318.,
         214.,  234.,  217.,  354.,  246.,  351.,  273.,  343.,  361.,
         493.,  313.,  256.,  218.,  328.,  266.,  272.,  279.,  247.,
         321.,  278.,  289.,  316.,  310.,  307.,  342.,  311.,  248.,
         305.,  233.,  353.,  358.,  319.,  326.,  184.,  360.,  203.,
         236.,  302.,  527.,  262.,  212.,  241.,  297.,  293.,  416.,
         538.,  268.,  338.,  309.,  521.,  287.,  259.,  299.,  298.,
         346.,  412.,  244.,  356.,  257.,  375.,  260.,  362.,  359.,
         413.,  308.,  387.,  282.,  294.,  350.,  324.,  451.,  281.,
         258.,  331.,  467.,  462.,  380.,  333.,  466.,  381.,  347.,
         337.,  280.,  473.,  249.,  435.,  301.,  341.,  404.,  322.,
         325.,  334.,  344.,  422.,  323.,  345.,  304.,  395.,  330.,
         286.,  335.,  415.,  407.,  271.,  265.,  447.,  611.,  372.,
         408.,  390.,  376.,  436.,  264.,  336.,  382.,  533.,  384.,
         385.,  386.,  427.,  365.,  441.,  371.,  388.,  364.,  564.,
         373.,  355.,  314.,  370.,  253.,  340.,  439.,  393.,  269.,
         357.,  546.,  504.]),
 'mths_since_recent_bc_dlq': array([  nan,   35.,   53.,   16.,   75.,   11.,   70.,   69.,   48.,
          45.,    8.,   14.,   59.,   10.,   50.,   25.,   71.,   76.,
          20.,   34.,    7.,   28.,   41.,   38.,   62.,   56.,   74.,
          60.,   47.,   18.,   55.,   49.,   77.,   66.,   58.,   15.,
          12.,   61.,   22.,   21.,   37.,   33.,   31.,   81.,   57.,
           6.,   36.,    5.,   42.,   17.,   29.,   23.,   64.,    9.,
          13.,   44.,   46.,   68.,    4.,    3.,   26.,   80.,   73.,
          24.,   19.,   72.,   65.,   43.,    1.,   79.,   27.,   52.,
          78.,   30.,   40.,   39.,   63.,   32.,   67.,   54.,   84.,
          51.,    0.,   82.,    2.,  106.,   92.,   90.,   88.,   95.,
          86.,   83.,  102.,   94.,   87.,   85.,   89.,  122.,   93.,
         109.,   91.,   99.,   96.,  145.,  107.,  127.,  124.,  143.,
         149.,  100.,  116.,  152.,   97.,  103.,   98.,  105.,  101.,
         114.,  112.,  141.,  110.,  111.,  108.,  128.,  113.,  176.,
         121.,  131.,  115.,  104.,  135.,  140.,  134.,  133.,  151.,
         159.,  130.,  139.,  120.]),
 'mths_since_recent_inq': array([ nan,   3.,  10.,   8.,   4.,  11.,  20.,  17.,   6.,   7.,   2.,
         12.,   0.,   9.,   5.,  14.,   1.,  13.,  16.,  21.,  19.,  18.,
         22.,  15.,  23.,  24.,  25.]),
 'mths_since_recent_revol_delinq': array([  nan,   35.,   53.,   43.,   16.,   75.,   11.,   70.,   69.,
          48.,   45.,    8.,   14.,   59.,   10.,   50.,   17.,   15.,
          36.,   25.,   71.,   37.,   76.,   20.,   34.,    5.,    7.,
          28.,   41.,   38.,   62.,   29.,   54.,   74.,   60.,   47.,
          18.,   55.,   49.,   77.,   66.,   12.,   61.,    4.,   56.,
          23.,   39.,   33.,   32.,   13.,    3.,   31.,    9.,   57.,
           6.,   80.,   44.,   42.,   22.,   30.,   46.,   68.,   26.,
          81.,   64.,   73.,   24.,   19.,   72.,    1.,   79.,   52.,
           2.,   67.,   27.,   40.,   58.,   78.,   21.,   51.,   63.,
          84.,   65.,    0.,   82.,  106.,  135.,  115.,   88.,   93.,
          95.,   86.,   83.,  102.,   87.,   85.,  122.,   94.,  109.,
          91.,  146.,  134.,   89.,  114.,   99.,   96.,   90.,  107.,
         165.,  127.,  119.,  101.,  124.,  129.,  113.,  120.,  131.,
         143.,  103.,  149.,  118.,  130.,  141.,  116.,  100.,  152.,
          92.,   97.,   98.,  105.,  112.,  110.,  125.,  108.,  111.,
         176.,  121.,  137.,  133.,  104.,  140.,  151.,  159.,  117.,  132.]),
 'num_accts_ever_120_pd': array([ nan,   0.,   1.,   6.,   3.,   7.,   2.,   5.,   9.,  10.,   4.,
          8.,  20.,  12.,  17.,  11.,  13.,  15.,  14.,  21.,  19.,  29.,
         24.,  26.,  16.,  18.,  25.,  22.,  23.,  39.,  30.]),
 'num_actv_bc_tl': array([ nan,   4.,   2.,   3.,   6.,   8.,   1.,   5.,  10.,  11.,   7.,
         15.,   0.,   9.,  13.,  17.,  12.,  20.,  14.,  16.,  19.,  21.,
         26.,  18.,  23.,  22.,  30.,  24.,  25.]),
 'num_actv_rev_tl': array([ nan,   7.,   5.,   4.,   8.,   2.,  24.,   3.,   6.,  12.,  11.,
         13.,  18.,  10.,   9.,  15.,  19.,  21.,   1.,  14.,  16.,  17.,
         20.,   0.,  26.,  22.,  29.,  23.,  27.,  28.,  25.,  37.,  31.,
         34.,  38.,  32.,  35.,  30.,  44.,  33.,  36.,  40.,  39.]),
 'num_bc_sats': array([ nan,   8.,   4.,   6.,   3.,   5.,  13.,  11.,   2.,   1.,  16.,
          7.,  12.,  18.,   9.,   0.,  10.,  15.,  17.,  14.,  19.,  21.,
         20.,  24.,  22.,  28.,  27.,  35.,  25.,  32.,  29.,  23.,  26.,
         33.,  30.,  31.,  36.,  37.,  57.,  63.,  39.,  44.,  34.,  40.]),
 'num_bc_tl': array([ nan,  10.,   8.,   4.,  11.,  14.,   7.,   5.,   9.,  13.,   6.,
         17.,   2.,  12.,  19.,  25.,  16.,  18.,   3.,  20.,  15.,  23.,
          0.,  26.,  24.,  21.,   1.,  22.,  29.,  28.,  31.,  34.,  30.,
         38.,  27.,  36.,  33.,  39.,  32.,  65.,  35.,  37.,  40.,  46.,
         42.,  52.,  44.,  43.,  41.,  45.,  54.,  47.,  57.,  48.,  50.,
         70.,  51.,  58.,  61.,  53.,  68.,  59.]),
 'num_il_tl': array([  nan,    0.,   15.,   11.,    8.,    1.,    2.,   17.,    9.,
           3.,    4.,    6.,   12.,   16.,    5.,   13.,   14.,   30.,
          22.,    7.,   33.,   10.,   20.,   27.,   18.,   31.,   39.,
          24.,   19.,   28.,   36.,   21.,   35.,   54.,   29.,   25.,
          23.,   40.,   26.,   43.,   32.,   37.,   34.,   42.,   41.,
          44.,   48.,   38.,   46.,   47.,   50.,   45.,   52.,   56.,
          57.,   49.,   53.,   58.,   61.,   51.,   66.,   55.,   59.,
          86.,   82.,  104.,   64.,   69.,   68.,   65.,   60.,  100.,
         101.,   67.,   73.,  117.,   89.,   63.,   72.,   83.,  118.,
          71.,   62.,   79.,   93.,   77.,   78.,   85.,   70.,   75.,
          91.,   74.,   87.,   88.,  107.,   97.,   81.,  121.,   76.,
          96.,   84.,  128.]),
 'num_op_rev_tl': array([ nan,  15.,   8.,   9.,  10.,   5.,   6.,   3.,   4.,  29.,   7.,
         11.,  16.,  13.,  12.,  20.,  19.,  26.,  18.,  14.,  17.,  23.,
          2.,  22.,  28.,   1.,  24.,  21.,  25.,   0.,  27.,  31.,  39.,
         32.,  37.,  45.,  30.,  34.,  38.,  43.,  33.,  58.,  36.,  42.,
         35.,  47.,  48.,  46.,  41.,  44.,  40.,  49.,  83.,  62.,  50.,
         52.,  56.,  51.,  73.]),
 'num_rev_accts': array([  nan,   18.,   14.,   15.,    8.,   11.,   20.,   24.,    7.,
          19.,    9.,   10.,   17.,   13.,   40.,    5.,   22.,   30.,
          23.,   25.,    6.,   29.,   27.,   28.,   12.,   26.,   46.,
          16.,   34.,   32.,    4.,   31.,   38.,   50.,   21.,   35.,
          51.,    3.,    2.,   37.,   43.,   36.,   44.,   33.,   48.,
          39.,   45.,   42.,   41.,   47.,   49.,   94.,   75.,   52.,
          53.,   54.,   55.,   56.,   58.,   57.,   62.,   59.,   91.,
          60.,   61.,    1.,    0.,   80.,   63.,   77.,   67.,   64.,
          69.,   68.,   72.,   73.,   74.,   66.,   65.,   92.,   90.,
         102.,   71.,   87.,   70.,   96.,  105.,   81.,   78.,   89.,
          86.,   82.,  103.,   76.]),
 'num_rev_tl_bal_gt_0': array([ nan,   7.,   5.,   4.,   8.,   2.,  24.,   3.,   6.,  12.,  11.,
         13.,  18.,  10.,   9.,  15.,  19.,  21.,   1.,  14.,  16.,  17.,
         20.,   0.,  26.,  22.,  23.,  29.,  27.,  28.,  25.,  37.,  31.,
         34.,  30.,  38.,  42.,  33.,  39.,  36.,  32.]),
 'num_sats': array([ nan,  15.,  17.,  14.,   9.,  12.,   7.,   3.,   6.,  16.,   8.,
         29.,   4.,   5.,  13.,  10.,  11.,  20.,  21.,  27.,  19.,  30.,
         18.,  25.,  22.,  24.,  40.,   2.,  26.,  23.,   1.,  28.,  31.,
         37.,  32.,  33.,  42.,  41.,   0.,  34.,  39.,  36.,  35.,  45.,
         38.,  49.,  53.,  51.,  43.,  62.,  44.,  48.,  50.,  52.,  46.,
         55.,  58.,  57.,  47.,  56.,  90.,  75.,  84.,  54.,  76.,  59.,
         77.]),
 'num_tl_120dpd_2m': array([ nan,   0.,   2.,   1.,   6.]),
 'num_tl_30dpd': array([ nan,   0.,   1.,   2.,   3.,   4.]),
 'num_tl_90g_dpd_24m': array([ nan,   0.,   1.,   2.,   7.,   5.,   4.,   3.,   6.,   8.,   9.,
         10.,  11.,  17.,  15.,  13.,  18.,  12.,  20.,  24.,  14.,  16.,
         26.,  39.,  22.,  19.]),
 'num_tl_op_past_12m': array([ nan,   4.,   3.,   5.,   1.,   2.,   0.,   6.,   9.,   7.,   8.,
         15.,  10.,  12.,  11.,  13.,  14.,  17.,  16.,  19.,  24.,  25.,
         18.,  20.,  23.,  22.,  21.,  26.,  30.,  28.]),
 'open_acc': array([  3.,   2.,  10.,  15.,   9.,   7.,   4.,  11.,  14.,  12.,  20.,
          8.,   6.,  17.,   5.,  13.,  16.,  30.,  21.,  18.,  19.,  27.,
         23.,  34.,  25.,  22.,  24.,  26.,  32.,  28.,  29.,  33.,  31.,
         39.,  35.,  36.,  38.,  44.,  41.,  42.,   1.,  46.,  37.,  47.,
         nan,  40.,  45.,  49.,  53.,  51.,  43.,   0.,  62.,  48.,  50.,
         52.,  55.,  58.,  57.,  56.,  90.,  76.,  84.,  54.,  59.,  77.]),
 'open_acc_6m': array([ nan,   0.,   6.,   3.,   1.,   2.,   5.,   4.,   9.,   8.,   7.,
         14.,  12.,  10.,  11.,  16.,  15.,  17.]),
 'open_il_12m': array([ nan,   0.,   2.,   1.,   4.,   3.,   5.,   9.,   6.,   7.,   8.,
         10.,  12.,  11.,  13.,  20.,  25.]),
 'open_il_24m': array([ nan,   1.,   2.,   3.,   4.,   0.,   6.,   5.,   7.,  10.,   9.,
         19.,  11.,   8.,  12.,  14.,  13.,  15.,  18.,  16.,  26.,  17.,
         28.,  51.,  20.]),
 'open_il_6m': array([ nan,   3.,   1.,   2.,  10.,   0.,   4.,  14.,  12.,   9.,   7.,
          6.,   5.,  11.,  19.,  17.,  13.,   8.,  15.,  18.,  21.,  20.,
         31.,  22.,  16.,  33.,  23.,  25.,  24.,  28.,  26.,  27.,  47.,
         30.,  29.,  34.,  38.,  35.,  32.,  45.]),
 'open_rv_12m': array([ nan,   0.,  12.,   2.,   4.,   1.,   6.,   3.,   5.,  11.,   7.,
          8.,   9.,  15.,  14.,  10.,  13.,  17.,  18.,  28.,  16.,  20.]),
 'open_rv_24m': array([ nan,   1.,  16.,   3.,   7.,   0.,  10.,   9.,   4.,   5.,   2.,
          6.,  11.,   8.,  24.,  13.,  17.,  12.,  15.,  20.,  21.,  14.,
         19.,  22.,  18.,  25.,  39.,  23.,  35.,  27.,  29.,  26.,  30.,
         28.]),
 'pct_tl_nvr_dlq': array([   nan,  1.   ,  0.75 ,  0.812,  0.955,  0.786,  0.893,  0.773,
         0.902,  0.913,  0.824,  0.771,  0.96 ,  0.95 ,  0.863,  0.682,
         0.941,  0.969,  0.8  ,  0.87 ,  0.774,  0.964,  0.966,  0.932,
         0.977,  0.921,  0.947,  0.981,  0.939,  0.952,  0.975,  0.974,
         0.714,  0.872,  0.971,  0.933,  0.894,  0.958,  0.882,  0.917,
         0.97 ,  0.818,  0.885,  0.9  ,  0.853,  0.953,  0.833,  0.912,
         0.889,  0.65 ,  0.929,  0.711,  0.852,  0.842,  0.88 ,  0.923,
         0.962,  0.846,  0.591,  0.897,  0.909,  0.957,  0.857,  0.931,
         0.937,  0.871,  0.667,  0.862,  0.895,  0.956,  0.978,  0.905,
         0.838,  0.968,  0.875,  0.892,  0.864,  0.92 ,  0.762,  0.976,
         0.967,  0.759,  0.949,  0.722,  0.915,  0.789,  0.81 ,  0.742,
         0.94 ,  0.926,  0.84 ,  0.86 ,  0.946,  0.903,  0.381,  0.78 ,
         0.919,  0.944,  0.973,  0.529,  0.93 ,  0.943,  0.696,  0.739,
         0.963,  0.815,  0.982,  0.881,  0.906,  0.972,  0.85 ,  0.98 ,
         0.979,  0.792,  0.7  ,  0.873,  0.687,  0.706,  0.925,  0.82 ,
         0.778,  0.767,  0.867,  0.735,  0.935,  0.911,  0.741,  0.76 ,
         0.927,  0.71 ,  0.538,  0.625,  0.727,  0.848,  0.826,  0.828,
         0.733,  0.692,  0.643,  0.821,  0.865,  0.737,  0.56 ,  0.72 ,
         0.769,  0.806,  0.879,  0.841,  0.886,  0.984,  0.765,  0.684,
         0.656,  0.861,  0.79 ,  0.914,  0.609,  0.844,  0.951,  0.918,
         0.674,  0.795,  0.808,  0.83 ,  0.655,  0.816,  0.66 ,  0.829,
         0.783,  0.63 ,  0.91 ,  0.679,  0.67 ,  0.983,  0.73 ,  0.878,
         0.62 ,  0.724,  0.647,  0.562,  0.839,  0.68 ,  0.89 ,  0.904,
         0.74 ,  0.565,  0.6  ,  0.333,  0.704,  0.621,  0.743,  0.793,
         0.708,  0.794,  0.654,  0.884,  0.556,  0.822,  0.781,  0.615,
         0.357,  0.854,  0.869,  0.907,  0.64 ,  0.575,  0.922,  0.681,
         0.652,  0.611,  0.633,  0.758,  0.57 ,  0.607,  0.619,  0.689,
         0.429,  0.725,  0.959,  0.961,  0.936,  0.868,  0.526,  0.533,
         0.583,  0.676,  0.412,  0.891,  0.571,  0.775,  0.965,  0.636,
         0.809,  0.825,  0.368,  0.928,  0.632,  0.567,  0.896,  0.757,
         0.942,  0.69 ,  0.804,  0.784,  0.934,  0.887,  0.694,  0.353,
         0.5  ,  0.745,  0.756,  0.594,  0.805,  0.657,  0.738,  0.545,
         0.618,  0.791,  0.45 ,  0.898,  0.55 ,  0.593,  0.788,  0.613,
         0.814,  0.731,  0.849,  0.703,  0.524,  0.41 ,  0.673,  0.348,
         0.719,  0.559,  0.787,  0.945,  0.658,  0.588,  0.4  ,  0.686,
         0.811,  0.763,  0.458,  0.837,  0.697,  0.481,  0.548,  0.754,
         0.579,  0.744,  0.467,  0.948,  0.677,  0.51 ,  0.622,  0.519,
         0.568,  0.586,  0.851,  0.645,  0.736,  0.457,  0.44 ,  0.985,
         0.462,  0.796,  0.877,  0.531,  0.61 ,  0.77 ,  0.58 ,  0.675,
         0.54 ,  0.46 ,  0.53 ,  0.18 ,  0.17 ,  0.33 ,  0.59 ,  0.48 ,
         0.42 ,  0.52 ,  0.36 ,  0.47 ,  0.43 ,  0.34 ,  0.99 ,  0.3  ,
         0.25 ,  0.38 ,  0.27 ,  0.35 ,  0.39 ,  0.31 ,  0.37 ,  0.28 ,
         0.15 ,  0.49 ,  0.16 ,  0.712,  0.378,  0.843,  0.831,  0.648,
         0.552,  0.732,  0.987,  0.577,  0.536,  0.606,  0.986,  0.455,
         0.542,  0.883,  0.836,  0.578,  0.768,  0.717,  0.698,  0.761,
         0.576,  0.764,  0.541,  0.522,  0.605,  0.702,  0.845,  0.471,
         0.421,  0.257,  0.776,  0.543,  0.649,  0.707,  0.312,  0.308,
         0.635,  0.487,  0.646,  0.989,  0.389,  0.558,  0.581,  0.267,
         0.721,  0.476,  0.441,  0.614,  0.827,  0.259,  0.803,  0.659,
         0.908,  0.167,  0.437,  0.866,  0.433,  0.807,  0.938,  0.639,
         0.444,  0.718,  0.629,  0.474,  0.282,  0.847,  0.924,  0.407,
         0.797,  0.988,  0.705,  0.453,  0.683,  0.782,  0.424,  0.641,
         0.316,  0.512,  0.587,  0.723,  0.726,  0.364,  0.755,  0.661,
         0.779,  0.468,  0.954,  0.323,  0.206,  0.772,  0.292,  0.855,
         0.514,  0.785,  0.766,  0.566,  0.604,  0.638,  0.393,  0.464,
         0.286,  0.276,  0.874,  0.189,  0.242,  0.899,  0.375,  0.564,
         0.595,  0.653,  0.394,  0.475,  0.685,  0.187,  0.617,  0.478,
         0.644,  0.355,  0.32 ,  0.125,  0.391,  0.695,  0.729,  0.916,
         0.486,  0.817,  0.516,  0.263,  0.521,  0.553,  0.634,  0.387,
         0.273,  0.823,  0.385,  0.304,  0.628,  0.484,  0.483,  0.859,
         0.417,  0.448,  0.423,  0.992,  0.459,  0.662,  0.515,  0.409,
         0.29 ,  0.813,  0.901,  0.517,  0.19 ,  0.469,  0.214,  0.537,
         0.627,  0.746,  0.561,  0.343,  0.535,  0.418,  0.642,  0.819,
         0.993,  0.278,  0.435,  0.888,  0.182,  0.709,  0.452,  0.592,
         0.154,  0.688,  0.563,  0.438,  0.351]),
 'percent_bc_gt_75': array([    nan,  0.    ,  1.    ,  0.167 ,  0.25  ,  0.01  ,  0.5   ,
         0.667 ,  0.333 ,  0.75  ,  0.077 ,  0.4   ,  0.2   ,  0.8   ,
         0.375 ,  0.727 ,  0.571 ,  0.818 ,  0.6   ,  0.143 ,  0.545 ,
         0.1   ,  0.529 ,  0.0033,  0.778 ,  0.222 ,  0.889 ,  0.364 ,
         0.833 ,  0.429 ,  0.444 ,  0.857 ,  0.615 ,  0.286 ,  0.625 ,
         0.769 ,  0.0067,  0.0075,  0.008 ,  0.125 ,  0.714 ,  0.091 ,
         0.111 ,  0.556 ,  0.083 ,  0.875 ,  0.182 ,  0.005 ,  0.0025,
         0.006 ,  0.267 ,  0.273 ,  0.154 ,  0.231 ,  0.3   ,  0.002 ,
         0.917 ,  0.9   ,  0.417 ,  0.7   ,  0.105 ,  0.0038,  0.909 ,
         0.19  ,  0.636 ,  0.923 ,  0.0063,  0.0043,  0.071 ,  0.455 ,
         0.0029,  0.905 ,  0.214 ,  0.176 ,  0.538 ,  0.133 ,  0.308 ,
         0.583 ,  0.462 ,  0.067 ,  0.004 ,  0.846 ,  0.059 ,  0.385 ,
         0.867 ,  0.118 ,  0.357 ,  0.533 ,  0.211 ,  0.235 ,  0.692 ,
         0.263 ,  0.045 ,  0.588 ,  0.062 ,  0.684 ,  0.762 ,  0.929 ,
         0.056 ,  0.733 ,  0.312 ,  0.643 ,  0.095 ,  0.05  ,  0.158 ,
         0.187 ,  0.437 ,  0.042 ,  0.467 ,  0.053 ,  0.294 ,  0.031 ,
         0.786 ,  0.238 ,  0.412 ,  0.316 ,  0.933 ,  0.474 ,  0.882 ,
         0.706 ,  0.937 ,  0.526 ,  0.687 ,  0.278 ,  0.812 ,  0.941 ,
         0.087 ,  0.389 ,  0.562 ,  0.765 ,  0.15  ,  0.35  ,  0.737 ,
         0.944 ,  0.647 ,  0.281 ,  0.842 ,  0.368 ,  0.227 ,  0.043 ,
         0.824 ,  0.063 ,  0.353 ,  0.048 ,  0.313 ,  0.45  ,  0.85  ,
         0.188 ,  0.722 ,  0.471 ,  0.034 ,  0.381 ,  0.174 ,  0.04  ,
         0.13  ,  0.522 ,  0.192 ,  0.421 ,  0.55  ,  0.619 ,  0.611 ,
         0.037 ,  0.138 ,  0.074 ,  0.95  ,  0.036 ,  0.84  ,  0.524 ,
         0.261 ,  0.579 ,  0.033 ,  0.28  ,  0.103 ,  0.148 ,  0.065 ,
         0.947 ,  0.0014,  0.136 ,  0.0017,  0.0057,  0.0071,  0.955 ,
         0.185 ,  0.026 ,  0.789 ,  0.038 ,  0.632 ,  0.03  ,  0.688 ,
         0.438 ]),
 'policy_code': [1.0]
 Categories (1, float64): [1.0],
 'pub_rec': array([  0.,   1.,   2.,   3.,   4.,   5.,  nan,   6.,   9.,   8.,   7.,
         49.,  11.,  10.,  54.,  15.,  13.,  12.,  20.,  86.,  19.,  40.,
         17.,  24.,  14.]),
 'pub_rec_bankruptcies': array([  0.,   1.,   2.,  nan,   4.,   3.,   8.,   5.,   6.,   7.]),
 'purpose': [credit_card, car, small_business, other, wedding, ..., moving, vacation, house, renewable_energy, educational]
 Length: 14
 Categories (14, object): [credit_card, car, small_business, other, ..., vacation, house, renewable_energy, educational],
 'pymnt_plan': [n]
 Categories (1, object): [n],
 'revol_bal': array([  13648.,    1687.,    2956., ...,  120611.,  178379.,   60328.]),
 'revol_util': array([  83.7,    9.4,   98.5, ...,  105.6,  111.6,  162. ]),
 'sub_grade': [B2, C4, C5, C1, B5, ..., G3, G2, G1, F5, G5]
 Length: 35
 Categories (35, object): [B2, C4, C5, C1, ..., G2, G1, F5, G5],
 'tax_liens': array([  0.,  nan,   1.,   3.,   2.,   4.,   8.,   7.,   5.,   6.,  48.,
         11.,  10.,  53.,  13.,  12.,   9.,  85.,  18.,  15.,  39.,  16.,
         23.]),
 'term': [36 months, 60 months]
 Categories (2, object): [36 months, 60 months],
 'tot_coll_amt': array([    nan,      0.,  15386., ...,  21101.,   5677.,   6165.]),
 'tot_cur_bal': array([     nan,    7137.,  200314., ...,  242670.,  201817.,  236497.]),
 'tot_hi_cred_lim': array([     nan,   29700.,  233004., ...,  267838.,  270826.,  557391.]),
 'total_acc': array([   9.,    4.,   10.,   37.,   38.,   12.,   11.,   13.,    3.,
          23.,   34.,   29.,   28.,   42.,   14.,   22.,   21.,   17.,
           7.,   31.,   44.,   26.,   16.,    6.,   18.,   27.,   24.,
          25.,   40.,   35.,    8.,   20.,   15.,   19.,   36.,   51.,
          32.,   30.,   33.,   46.,    5.,   61.,   56.,   50.,   41.,
          39.,   79.,   62.,   43.,   47.,   53.,   45.,   60.,   55.,
          52.,   58.,   54.,   57.,   49.,   63.,   48.,   59.,   77.,
          87.,   75.,   72.,   64.,   67.,   78.,   76.,   74.,   66.,
          81.,   90.,   80.,   71.,   69.,   73.,   70.,   68.,   65.,
           2.,    1.,   nan,  105.,   83.,   84.,   98.,   88.,   82.,
          91.,   99.,   94.,  102.,  112.,   95.,  135.,   85.,   92.,
          86.,  110.,  106.,   89.,   96.,  104.,  151.,   97.,  113.,
         169.,   93.,  129.,  103.,  111.,  101.,  124.,  100.,  114.,
         116.,  107.,  150.,  119.,  117.,  118.,  176.,  115.,  108.,
         133.,  144.]),
 'total_bal_ex_mort': array([     nan,    7137.,   46738., ...,  154662.,  201817.,  138125.]),
 'total_bal_il': array([    nan,  47194.,   9358., ...,  20294.,  45430.,  93273.]),
 'total_bc_limit': array([     nan,   18100.,   14800., ...,    7790.,  161780.,   45602.]),
 'total_cu_tl': array([ nan,   0.,   1.,   6.,   3.,   2.,   7.,   4.,   8.,  12.,   5.,
         11.,  14.,  16.,   9.,  15.,  10.,  18.,  22.,  13.,  17.,  21.,
         20.,  24.,  19.,  25.,  43.,  23.,  31.,  34.,  38.,  27.,  35.,
         33.,  26.,  28.,  30.,  37.,  32.,  36.,  44.,  41.]),
 'total_il_high_credit_limit': array([     nan,       0.,   53404., ...,  148273.,  129934.,  124725.]),
 'total_rev_hi_lim': array([     nan,   29700.,   23800., ...,  334560.,  181280.,   26940.]),
 'verification_status': [Verified, Source Verified, Not Verified]
 Categories (3, object): [Verified, Source Verified, Not Verified],
 'verification_status_joint': [missing, Not Verified, Verified, Source Verified]
 Categories (4, object): [missing, Not Verified, Verified, Source Verified],
 'zip_code': [860xx, 309xx, 606xx, 917xx, 972xx, ..., 909xx, 516xx, 511xx, 901xx, 095xx]
 Length: 916
 Categories (916, object): [860xx, 309xx, 606xx, 917xx, ..., 516xx, 511xx, 901xx, 095xx]}

In [27]:
category_columns = df.select_dtypes(include=['category']).columns
df = pd.get_dummies(df, columns=category_columns, drop_first=True)

In [28]:
df.shape


Out[28]:
(538008, 1926)

Let's ensure that all of our missing values in float columns be nan values via the numpy library. I am doing this because Numpy is a highly optimized library.


In [29]:
float_columns = df.select_dtypes(include=['float64']).columns

for c in float_columns:
    df.loc[df[df[c].isnull()].index, c] = np.nan

In [30]:
pickle_object(unique_val_dict, "unique_values_for_columns")

In [31]:
pickle_object(df, "dummied_dataset")

In [8]:
df = unpickle_object("dummied_dataset.pkl")

In [3]:
df.head()


Out[3]:
loan_amnt funded_amnt funded_amnt_inv int_rate installment annual_inc dti delinq_2yrs inq_last_6mths mths_since_last_delinq mths_since_last_record open_acc pub_rec revol_bal revol_util total_acc annual_inc_joint dti_joint acc_now_delinq tot_coll_amt tot_cur_bal open_acc_6m open_il_6m open_il_12m open_il_24m mths_since_rcnt_il total_bal_il il_util open_rv_12m open_rv_24m max_bal_bc total_rev_hi_lim inq_fi total_cu_tl inq_last_12m acc_open_past_24mths avg_cur_bal bc_open_to_buy bc_util chargeoff_within_12_mths delinq_amnt mo_sin_old_il_acct mo_sin_old_rev_tl_op mo_sin_rcnt_rev_tl_op mo_sin_rcnt_tl mort_acc mths_since_recent_bc mths_since_recent_bc_dlq mths_since_recent_inq mths_since_recent_revol_delinq num_accts_ever_120_pd num_actv_bc_tl num_actv_rev_tl num_bc_sats num_bc_tl num_il_tl num_op_rev_tl num_rev_accts num_rev_tl_bal_gt_0 num_sats num_tl_120dpd_2m num_tl_30dpd num_tl_90g_dpd_24m num_tl_op_past_12m pct_tl_nvr_dlq percent_bc_gt_75 pub_rec_bankruptcies tax_liens tot_hi_cred_lim total_bal_ex_mort total_bc_limit total_il_high_credit_limit term_ 60 months grade_B grade_C grade_D grade_E grade_F grade_G sub_grade_A2 sub_grade_A3 sub_grade_A4 sub_grade_A5 sub_grade_B1 sub_grade_B2 sub_grade_B3 sub_grade_B4 sub_grade_B5 sub_grade_C1 sub_grade_C2 sub_grade_C3 sub_grade_C4 sub_grade_C5 sub_grade_D1 sub_grade_D2 sub_grade_D3 sub_grade_D4 sub_grade_D5 sub_grade_E1 sub_grade_E2 sub_grade_E3 sub_grade_E4 sub_grade_E5 sub_grade_F1 sub_grade_F2 sub_grade_F3 sub_grade_F4 sub_grade_F5 sub_grade_G1 sub_grade_G2 sub_grade_G3 sub_grade_G4 sub_grade_G5 emp_length_10+ years emp_length_2 years emp_length_3 years emp_length_4 years emp_length_5 years emp_length_6 years emp_length_7 years emp_length_8 years emp_length_9 years emp_length_< 1 year emp_length_n/a home_ownership_MORTGAGE home_ownership_NONE home_ownership_OTHER home_ownership_OWN home_ownership_RENT verification_status_Source Verified verification_status_Verified issue_d_Apr-2009 issue_d_Apr-2010 issue_d_Apr-2011 issue_d_Apr-2012 issue_d_Apr-2013 issue_d_Apr-2014 issue_d_Apr-2015 issue_d_Apr-2016 issue_d_Aug-2007 issue_d_Aug-2008 issue_d_Aug-2009 issue_d_Aug-2010 issue_d_Aug-2011 issue_d_Aug-2012 issue_d_Aug-2013 issue_d_Aug-2014 issue_d_Aug-2015 issue_d_Aug-2016 issue_d_Dec-2007 issue_d_Dec-2008 issue_d_Dec-2009 issue_d_Dec-2010 issue_d_Dec-2011 issue_d_Dec-2012 issue_d_Dec-2013 issue_d_Dec-2014 issue_d_Dec-2015 issue_d_Dec-2016 issue_d_Feb-2008 issue_d_Feb-2009 issue_d_Feb-2010 issue_d_Feb-2011 issue_d_Feb-2012 issue_d_Feb-2013 issue_d_Feb-2014 issue_d_Feb-2015 issue_d_Feb-2016 issue_d_Jan-2008 issue_d_Jan-2009 issue_d_Jan-2010 issue_d_Jan-2011 issue_d_Jan-2012 issue_d_Jan-2013 issue_d_Jan-2014 issue_d_Jan-2015 issue_d_Jan-2016 issue_d_Jul-2007 issue_d_Jul-2008 issue_d_Jul-2009 issue_d_Jul-2010 issue_d_Jul-2011 issue_d_Jul-2012 issue_d_Jul-2013 issue_d_Jul-2014 issue_d_Jul-2015 issue_d_Jul-2016 issue_d_Jun-2007 issue_d_Jun-2008 issue_d_Jun-2009 issue_d_Jun-2010 issue_d_Jun-2011 issue_d_Jun-2012 issue_d_Jun-2013 issue_d_Jun-2014 issue_d_Jun-2015 issue_d_Jun-2016 issue_d_Mar-2008 issue_d_Mar-2009 issue_d_Mar-2010 issue_d_Mar-2011 issue_d_Mar-2012 issue_d_Mar-2013 issue_d_Mar-2014 issue_d_Mar-2015 issue_d_Mar-2016 issue_d_May-2008 issue_d_May-2009 issue_d_May-2010 issue_d_May-2011 issue_d_May-2012 issue_d_May-2013 issue_d_May-2014 issue_d_May-2015 issue_d_May-2016 issue_d_Nov-2007 issue_d_Nov-2008 issue_d_Nov-2009 issue_d_Nov-2010 issue_d_Nov-2011 issue_d_Nov-2012 issue_d_Nov-2013 issue_d_Nov-2014 issue_d_Nov-2015 issue_d_Nov-2016 issue_d_Oct-2007 issue_d_Oct-2008 issue_d_Oct-2009 issue_d_Oct-2010 issue_d_Oct-2011 issue_d_Oct-2012 issue_d_Oct-2013 issue_d_Oct-2014 issue_d_Oct-2015 issue_d_Oct-2016 issue_d_Sep-2007 issue_d_Sep-2008 issue_d_Sep-2009 issue_d_Sep-2010 issue_d_Sep-2011 issue_d_Sep-2012 issue_d_Sep-2013 issue_d_Sep-2014 issue_d_Sep-2015 issue_d_Sep-2016 loan_status_Late purpose_credit_card purpose_debt_consolidation purpose_educational purpose_home_improvement purpose_house purpose_major_purchase purpose_medical purpose_moving purpose_other purpose_renewable_energy purpose_small_business purpose_vacation purpose_wedding zip_code_008xx zip_code_010xx zip_code_011xx zip_code_012xx zip_code_013xx zip_code_014xx zip_code_015xx zip_code_016xx zip_code_017xx zip_code_018xx zip_code_019xx zip_code_020xx zip_code_021xx zip_code_022xx zip_code_023xx zip_code_024xx zip_code_025xx zip_code_026xx zip_code_027xx zip_code_028xx zip_code_029xx zip_code_030xx zip_code_031xx zip_code_032xx zip_code_033xx zip_code_034xx zip_code_035xx zip_code_036xx zip_code_037xx zip_code_038xx zip_code_039xx zip_code_040xx zip_code_041xx zip_code_042xx zip_code_043xx zip_code_044xx zip_code_045xx zip_code_046xx zip_code_047xx zip_code_048xx zip_code_049xx zip_code_050xx zip_code_051xx zip_code_052xx zip_code_053xx zip_code_054xx zip_code_056xx zip_code_057xx zip_code_058xx zip_code_059xx zip_code_060xx zip_code_061xx zip_code_062xx zip_code_063xx zip_code_064xx zip_code_065xx zip_code_066xx zip_code_067xx zip_code_068xx zip_code_069xx zip_code_070xx zip_code_071xx zip_code_072xx zip_code_073xx zip_code_074xx zip_code_075xx zip_code_076xx zip_code_077xx zip_code_078xx zip_code_079xx zip_code_080xx zip_code_081xx zip_code_082xx zip_code_083xx zip_code_084xx zip_code_085xx zip_code_086xx zip_code_087xx zip_code_088xx zip_code_089xx zip_code_090xx zip_code_091xx zip_code_092xx zip_code_093xx zip_code_094xx zip_code_095xx zip_code_096xx zip_code_098xx zip_code_100xx zip_code_101xx zip_code_102xx zip_code_103xx zip_code_104xx zip_code_105xx zip_code_106xx zip_code_107xx zip_code_108xx zip_code_109xx zip_code_110xx zip_code_111xx zip_code_112xx zip_code_113xx zip_code_114xx zip_code_115xx zip_code_116xx zip_code_117xx zip_code_118xx zip_code_119xx zip_code_120xx zip_code_121xx zip_code_122xx zip_code_123xx zip_code_124xx zip_code_125xx zip_code_126xx zip_code_127xx zip_code_128xx zip_code_129xx zip_code_130xx zip_code_131xx zip_code_132xx zip_code_133xx zip_code_134xx zip_code_135xx zip_code_136xx zip_code_137xx zip_code_138xx zip_code_139xx zip_code_140xx zip_code_141xx zip_code_142xx zip_code_143xx zip_code_144xx zip_code_145xx zip_code_146xx zip_code_147xx zip_code_148xx zip_code_149xx zip_code_150xx zip_code_151xx zip_code_152xx zip_code_153xx zip_code_154xx zip_code_155xx zip_code_156xx zip_code_157xx zip_code_158xx zip_code_159xx zip_code_160xx zip_code_161xx zip_code_162xx zip_code_163xx zip_code_164xx zip_code_165xx zip_code_166xx zip_code_167xx zip_code_168xx zip_code_169xx zip_code_170xx zip_code_171xx zip_code_172xx zip_code_173xx zip_code_174xx zip_code_175xx zip_code_176xx zip_code_177xx zip_code_178xx zip_code_179xx zip_code_180xx zip_code_181xx zip_code_182xx zip_code_183xx zip_code_184xx zip_code_185xx zip_code_186xx zip_code_187xx zip_code_188xx zip_code_189xx zip_code_190xx zip_code_191xx zip_code_193xx zip_code_194xx zip_code_195xx zip_code_196xx zip_code_197xx zip_code_198xx zip_code_199xx zip_code_200xx zip_code_201xx zip_code_203xx zip_code_204xx zip_code_206xx zip_code_207xx zip_code_208xx zip_code_209xx zip_code_210xx zip_code_211xx zip_code_212xx zip_code_214xx zip_code_215xx zip_code_216xx zip_code_217xx zip_code_218xx zip_code_219xx zip_code_220xx zip_code_221xx zip_code_222xx zip_code_223xx zip_code_224xx zip_code_225xx zip_code_226xx zip_code_227xx zip_code_228xx zip_code_229xx zip_code_230xx zip_code_231xx zip_code_232xx zip_code_233xx zip_code_234xx zip_code_235xx zip_code_236xx zip_code_237xx zip_code_238xx zip_code_239xx zip_code_240xx zip_code_241xx zip_code_242xx zip_code_243xx zip_code_244xx zip_code_245xx zip_code_246xx zip_code_247xx zip_code_248xx zip_code_249xx zip_code_250xx zip_code_251xx zip_code_252xx zip_code_253xx zip_code_254xx zip_code_255xx zip_code_256xx ... earliest_cr_line_Feb-1990 earliest_cr_line_Feb-1991 earliest_cr_line_Feb-1992 earliest_cr_line_Feb-1993 earliest_cr_line_Feb-1994 earliest_cr_line_Feb-1995 earliest_cr_line_Feb-1996 earliest_cr_line_Feb-1997 earliest_cr_line_Feb-1998 earliest_cr_line_Feb-1999 earliest_cr_line_Feb-2000 earliest_cr_line_Feb-2001 earliest_cr_line_Feb-2002 earliest_cr_line_Feb-2003 earliest_cr_line_Feb-2004 earliest_cr_line_Feb-2005 earliest_cr_line_Feb-2006 earliest_cr_line_Feb-2007 earliest_cr_line_Feb-2008 earliest_cr_line_Feb-2009 earliest_cr_line_Feb-2010 earliest_cr_line_Feb-2011 earliest_cr_line_Feb-2012 earliest_cr_line_Feb-2013 earliest_cr_line_Jan-1944 earliest_cr_line_Jan-1946 earliest_cr_line_Jan-1948 earliest_cr_line_Jan-1951 earliest_cr_line_Jan-1952 earliest_cr_line_Jan-1953 earliest_cr_line_Jan-1954 earliest_cr_line_Jan-1955 earliest_cr_line_Jan-1956 earliest_cr_line_Jan-1957 earliest_cr_line_Jan-1958 earliest_cr_line_Jan-1959 earliest_cr_line_Jan-1960 earliest_cr_line_Jan-1961 earliest_cr_line_Jan-1962 earliest_cr_line_Jan-1963 earliest_cr_line_Jan-1964 earliest_cr_line_Jan-1965 earliest_cr_line_Jan-1966 earliest_cr_line_Jan-1967 earliest_cr_line_Jan-1968 earliest_cr_line_Jan-1969 earliest_cr_line_Jan-1970 earliest_cr_line_Jan-1971 earliest_cr_line_Jan-1972 earliest_cr_line_Jan-1973 earliest_cr_line_Jan-1974 earliest_cr_line_Jan-1975 earliest_cr_line_Jan-1976 earliest_cr_line_Jan-1977 earliest_cr_line_Jan-1978 earliest_cr_line_Jan-1979 earliest_cr_line_Jan-1980 earliest_cr_line_Jan-1981 earliest_cr_line_Jan-1982 earliest_cr_line_Jan-1983 earliest_cr_line_Jan-1984 earliest_cr_line_Jan-1985 earliest_cr_line_Jan-1986 earliest_cr_line_Jan-1987 earliest_cr_line_Jan-1988 earliest_cr_line_Jan-1989 earliest_cr_line_Jan-1990 earliest_cr_line_Jan-1991 earliest_cr_line_Jan-1992 earliest_cr_line_Jan-1993 earliest_cr_line_Jan-1994 earliest_cr_line_Jan-1995 earliest_cr_line_Jan-1996 earliest_cr_line_Jan-1997 earliest_cr_line_Jan-1998 earliest_cr_line_Jan-1999 earliest_cr_line_Jan-2000 earliest_cr_line_Jan-2001 earliest_cr_line_Jan-2002 earliest_cr_line_Jan-2003 earliest_cr_line_Jan-2004 earliest_cr_line_Jan-2005 earliest_cr_line_Jan-2006 earliest_cr_line_Jan-2007 earliest_cr_line_Jan-2008 earliest_cr_line_Jan-2009 earliest_cr_line_Jan-2010 earliest_cr_line_Jan-2011 earliest_cr_line_Jan-2012 earliest_cr_line_Jan-2013 earliest_cr_line_Jul-1951 earliest_cr_line_Jul-1955 earliest_cr_line_Jul-1958 earliest_cr_line_Jul-1959 earliest_cr_line_Jul-1960 earliest_cr_line_Jul-1961 earliest_cr_line_Jul-1962 earliest_cr_line_Jul-1963 earliest_cr_line_Jul-1964 earliest_cr_line_Jul-1965 earliest_cr_line_Jul-1966 earliest_cr_line_Jul-1967 earliest_cr_line_Jul-1968 earliest_cr_line_Jul-1969 earliest_cr_line_Jul-1970 earliest_cr_line_Jul-1971 earliest_cr_line_Jul-1972 earliest_cr_line_Jul-1973 earliest_cr_line_Jul-1974 earliest_cr_line_Jul-1975 earliest_cr_line_Jul-1976 earliest_cr_line_Jul-1977 earliest_cr_line_Jul-1978 earliest_cr_line_Jul-1979 earliest_cr_line_Jul-1980 earliest_cr_line_Jul-1981 earliest_cr_line_Jul-1982 earliest_cr_line_Jul-1983 earliest_cr_line_Jul-1984 earliest_cr_line_Jul-1985 earliest_cr_line_Jul-1986 earliest_cr_line_Jul-1987 earliest_cr_line_Jul-1988 earliest_cr_line_Jul-1989 earliest_cr_line_Jul-1990 earliest_cr_line_Jul-1991 earliest_cr_line_Jul-1992 earliest_cr_line_Jul-1993 earliest_cr_line_Jul-1994 earliest_cr_line_Jul-1995 earliest_cr_line_Jul-1996 earliest_cr_line_Jul-1997 earliest_cr_line_Jul-1998 earliest_cr_line_Jul-1999 earliest_cr_line_Jul-2000 earliest_cr_line_Jul-2001 earliest_cr_line_Jul-2002 earliest_cr_line_Jul-2003 earliest_cr_line_Jul-2004 earliest_cr_line_Jul-2005 earliest_cr_line_Jul-2006 earliest_cr_line_Jul-2007 earliest_cr_line_Jul-2008 earliest_cr_line_Jul-2009 earliest_cr_line_Jul-2010 earliest_cr_line_Jul-2011 earliest_cr_line_Jul-2012 earliest_cr_line_Jul-2013 earliest_cr_line_Jun-1955 earliest_cr_line_Jun-1957 earliest_cr_line_Jun-1959 earliest_cr_line_Jun-1960 earliest_cr_line_Jun-1962 earliest_cr_line_Jun-1963 earliest_cr_line_Jun-1964 earliest_cr_line_Jun-1965 earliest_cr_line_Jun-1966 earliest_cr_line_Jun-1967 earliest_cr_line_Jun-1968 earliest_cr_line_Jun-1969 earliest_cr_line_Jun-1970 earliest_cr_line_Jun-1971 earliest_cr_line_Jun-1972 earliest_cr_line_Jun-1973 earliest_cr_line_Jun-1974 earliest_cr_line_Jun-1975 earliest_cr_line_Jun-1976 earliest_cr_line_Jun-1977 earliest_cr_line_Jun-1978 earliest_cr_line_Jun-1979 earliest_cr_line_Jun-1980 earliest_cr_line_Jun-1981 earliest_cr_line_Jun-1982 earliest_cr_line_Jun-1983 earliest_cr_line_Jun-1984 earliest_cr_line_Jun-1985 earliest_cr_line_Jun-1986 earliest_cr_line_Jun-1987 earliest_cr_line_Jun-1988 earliest_cr_line_Jun-1989 earliest_cr_line_Jun-1990 earliest_cr_line_Jun-1991 earliest_cr_line_Jun-1992 earliest_cr_line_Jun-1993 earliest_cr_line_Jun-1994 earliest_cr_line_Jun-1995 earliest_cr_line_Jun-1996 earliest_cr_line_Jun-1997 earliest_cr_line_Jun-1998 earliest_cr_line_Jun-1999 earliest_cr_line_Jun-2000 earliest_cr_line_Jun-2001 earliest_cr_line_Jun-2002 earliest_cr_line_Jun-2003 earliest_cr_line_Jun-2004 earliest_cr_line_Jun-2005 earliest_cr_line_Jun-2006 earliest_cr_line_Jun-2007 earliest_cr_line_Jun-2008 earliest_cr_line_Jun-2009 earliest_cr_line_Jun-2010 earliest_cr_line_Jun-2011 earliest_cr_line_Jun-2012 earliest_cr_line_Jun-2013 earliest_cr_line_Mar-1960 earliest_cr_line_Mar-1961 earliest_cr_line_Mar-1962 earliest_cr_line_Mar-1963 earliest_cr_line_Mar-1964 earliest_cr_line_Mar-1965 earliest_cr_line_Mar-1966 earliest_cr_line_Mar-1967 earliest_cr_line_Mar-1968 earliest_cr_line_Mar-1969 earliest_cr_line_Mar-1970 earliest_cr_line_Mar-1971 earliest_cr_line_Mar-1972 earliest_cr_line_Mar-1973 earliest_cr_line_Mar-1974 earliest_cr_line_Mar-1975 earliest_cr_line_Mar-1976 earliest_cr_line_Mar-1977 earliest_cr_line_Mar-1978 earliest_cr_line_Mar-1979 earliest_cr_line_Mar-1980 earliest_cr_line_Mar-1981 earliest_cr_line_Mar-1982 earliest_cr_line_Mar-1983 earliest_cr_line_Mar-1984 earliest_cr_line_Mar-1985 earliest_cr_line_Mar-1986 earliest_cr_line_Mar-1987 earliest_cr_line_Mar-1988 earliest_cr_line_Mar-1989 earliest_cr_line_Mar-1990 earliest_cr_line_Mar-1991 earliest_cr_line_Mar-1992 earliest_cr_line_Mar-1993 earliest_cr_line_Mar-1994 earliest_cr_line_Mar-1995 earliest_cr_line_Mar-1996 earliest_cr_line_Mar-1997 earliest_cr_line_Mar-1998 earliest_cr_line_Mar-1999 earliest_cr_line_Mar-2000 earliest_cr_line_Mar-2001 earliest_cr_line_Mar-2002 earliest_cr_line_Mar-2003 earliest_cr_line_Mar-2004 earliest_cr_line_Mar-2005 earliest_cr_line_Mar-2006 earliest_cr_line_Mar-2007 earliest_cr_line_Mar-2008 earliest_cr_line_Mar-2009 earliest_cr_line_Mar-2010 earliest_cr_line_Mar-2011 earliest_cr_line_Mar-2012 earliest_cr_line_Mar-2013 earliest_cr_line_May-1953 earliest_cr_line_May-1955 earliest_cr_line_May-1958 earliest_cr_line_May-1959 earliest_cr_line_May-1960 earliest_cr_line_May-1962 earliest_cr_line_May-1963 earliest_cr_line_May-1964 earliest_cr_line_May-1965 earliest_cr_line_May-1966 earliest_cr_line_May-1967 earliest_cr_line_May-1968 earliest_cr_line_May-1969 earliest_cr_line_May-1970 earliest_cr_line_May-1971 earliest_cr_line_May-1972 earliest_cr_line_May-1973 earliest_cr_line_May-1974 earliest_cr_line_May-1975 earliest_cr_line_May-1976 earliest_cr_line_May-1977 earliest_cr_line_May-1978 earliest_cr_line_May-1979 earliest_cr_line_May-1980 earliest_cr_line_May-1981 earliest_cr_line_May-1982 earliest_cr_line_May-1983 earliest_cr_line_May-1984 earliest_cr_line_May-1985 earliest_cr_line_May-1986 earliest_cr_line_May-1987 earliest_cr_line_May-1988 earliest_cr_line_May-1989 earliest_cr_line_May-1990 earliest_cr_line_May-1991 earliest_cr_line_May-1992 earliest_cr_line_May-1993 earliest_cr_line_May-1994 earliest_cr_line_May-1995 earliest_cr_line_May-1996 earliest_cr_line_May-1997 earliest_cr_line_May-1998 earliest_cr_line_May-1999 earliest_cr_line_May-2000 earliest_cr_line_May-2001 earliest_cr_line_May-2002 earliest_cr_line_May-2003 earliest_cr_line_May-2004 earliest_cr_line_May-2005 earliest_cr_line_May-2006 earliest_cr_line_May-2007 earliest_cr_line_May-2008 earliest_cr_line_May-2009 earliest_cr_line_May-2010 earliest_cr_line_May-2011 earliest_cr_line_May-2012 earliest_cr_line_May-2013 earliest_cr_line_Nov-1950 earliest_cr_line_Nov-1953 earliest_cr_line_Nov-1954 earliest_cr_line_Nov-1955 earliest_cr_line_Nov-1956 earliest_cr_line_Nov-1957 earliest_cr_line_Nov-1958 earliest_cr_line_Nov-1959 earliest_cr_line_Nov-1960 earliest_cr_line_Nov-1961 earliest_cr_line_Nov-1962 earliest_cr_line_Nov-1963 earliest_cr_line_Nov-1964 earliest_cr_line_Nov-1965 earliest_cr_line_Nov-1966 earliest_cr_line_Nov-1967 earliest_cr_line_Nov-1968 earliest_cr_line_Nov-1969 earliest_cr_line_Nov-1970 earliest_cr_line_Nov-1971 earliest_cr_line_Nov-1972 earliest_cr_line_Nov-1973 earliest_cr_line_Nov-1974 earliest_cr_line_Nov-1975 earliest_cr_line_Nov-1976 earliest_cr_line_Nov-1977 earliest_cr_line_Nov-1978 earliest_cr_line_Nov-1979 earliest_cr_line_Nov-1980 earliest_cr_line_Nov-1981 earliest_cr_line_Nov-1982 earliest_cr_line_Nov-1983 earliest_cr_line_Nov-1984 earliest_cr_line_Nov-1985 earliest_cr_line_Nov-1986 earliest_cr_line_Nov-1987 earliest_cr_line_Nov-1988 earliest_cr_line_Nov-1989 earliest_cr_line_Nov-1990 earliest_cr_line_Nov-1991 earliest_cr_line_Nov-1992 earliest_cr_line_Nov-1993 earliest_cr_line_Nov-1994 earliest_cr_line_Nov-1995 earliest_cr_line_Nov-1996 earliest_cr_line_Nov-1997 earliest_cr_line_Nov-1998 earliest_cr_line_Nov-1999 earliest_cr_line_Nov-2000 earliest_cr_line_Nov-2001 earliest_cr_line_Nov-2002 earliest_cr_line_Nov-2003 earliest_cr_line_Nov-2004 earliest_cr_line_Nov-2005 earliest_cr_line_Nov-2006 earliest_cr_line_Nov-2007 earliest_cr_line_Nov-2008 earliest_cr_line_Nov-2009 earliest_cr_line_Nov-2010 earliest_cr_line_Nov-2011 earliest_cr_line_Nov-2012 earliest_cr_line_Nov-2013 earliest_cr_line_Oct-1950 earliest_cr_line_Oct-1954 earliest_cr_line_Oct-1957 earliest_cr_line_Oct-1958 earliest_cr_line_Oct-1959 earliest_cr_line_Oct-1960 earliest_cr_line_Oct-1961 earliest_cr_line_Oct-1962 earliest_cr_line_Oct-1963 earliest_cr_line_Oct-1964 earliest_cr_line_Oct-1965 earliest_cr_line_Oct-1966 earliest_cr_line_Oct-1967 earliest_cr_line_Oct-1968 earliest_cr_line_Oct-1969 earliest_cr_line_Oct-1970 earliest_cr_line_Oct-1971 earliest_cr_line_Oct-1972 earliest_cr_line_Oct-1973 earliest_cr_line_Oct-1974 earliest_cr_line_Oct-1975 earliest_cr_line_Oct-1976 earliest_cr_line_Oct-1977 earliest_cr_line_Oct-1978 earliest_cr_line_Oct-1979 earliest_cr_line_Oct-1980 earliest_cr_line_Oct-1981 earliest_cr_line_Oct-1982 earliest_cr_line_Oct-1983 earliest_cr_line_Oct-1984 earliest_cr_line_Oct-1985 earliest_cr_line_Oct-1986 earliest_cr_line_Oct-1987 earliest_cr_line_Oct-1988 earliest_cr_line_Oct-1989 earliest_cr_line_Oct-1990 earliest_cr_line_Oct-1991 earliest_cr_line_Oct-1992 earliest_cr_line_Oct-1993 earliest_cr_line_Oct-1994 earliest_cr_line_Oct-1995 earliest_cr_line_Oct-1996 earliest_cr_line_Oct-1997 earliest_cr_line_Oct-1998 earliest_cr_line_Oct-1999 earliest_cr_line_Oct-2000 earliest_cr_line_Oct-2001 earliest_cr_line_Oct-2002 earliest_cr_line_Oct-2003 earliest_cr_line_Oct-2004 earliest_cr_line_Oct-2005 earliest_cr_line_Oct-2006 earliest_cr_line_Oct-2007 earliest_cr_line_Oct-2008 earliest_cr_line_Oct-2009 earliest_cr_line_Oct-2010 earliest_cr_line_Oct-2011 earliest_cr_line_Oct-2012 earliest_cr_line_Oct-2013 earliest_cr_line_Sep-1956 earliest_cr_line_Sep-1957 earliest_cr_line_Sep-1959 earliest_cr_line_Sep-1960 earliest_cr_line_Sep-1961 earliest_cr_line_Sep-1962 earliest_cr_line_Sep-1963 earliest_cr_line_Sep-1964 earliest_cr_line_Sep-1965 earliest_cr_line_Sep-1966 earliest_cr_line_Sep-1967 earliest_cr_line_Sep-1968 earliest_cr_line_Sep-1969 earliest_cr_line_Sep-1970 earliest_cr_line_Sep-1971 earliest_cr_line_Sep-1972 earliest_cr_line_Sep-1973 earliest_cr_line_Sep-1974 earliest_cr_line_Sep-1975 earliest_cr_line_Sep-1976 earliest_cr_line_Sep-1977 earliest_cr_line_Sep-1978 earliest_cr_line_Sep-1979 earliest_cr_line_Sep-1980 earliest_cr_line_Sep-1981 earliest_cr_line_Sep-1982 earliest_cr_line_Sep-1983 earliest_cr_line_Sep-1984 earliest_cr_line_Sep-1985 earliest_cr_line_Sep-1986 earliest_cr_line_Sep-1987 earliest_cr_line_Sep-1988 earliest_cr_line_Sep-1989 earliest_cr_line_Sep-1990 earliest_cr_line_Sep-1991 earliest_cr_line_Sep-1992 earliest_cr_line_Sep-1993 earliest_cr_line_Sep-1994 earliest_cr_line_Sep-1995 earliest_cr_line_Sep-1996 earliest_cr_line_Sep-1997 earliest_cr_line_Sep-1998 earliest_cr_line_Sep-1999 earliest_cr_line_Sep-2000 earliest_cr_line_Sep-2001 earliest_cr_line_Sep-2002 earliest_cr_line_Sep-2003 earliest_cr_line_Sep-2004 earliest_cr_line_Sep-2005 earliest_cr_line_Sep-2006 earliest_cr_line_Sep-2007 earliest_cr_line_Sep-2008 earliest_cr_line_Sep-2009 earliest_cr_line_Sep-2010 earliest_cr_line_Sep-2011 earliest_cr_line_Sep-2012 earliest_cr_line_Sep-2013 earliest_cr_line_missing initial_list_status_w application_type_INDIVIDUAL application_type_JOINT verification_status_joint_Source Verified verification_status_joint_Verified verification_status_joint_missing
0 5000.0 5000.0 4975.0 10.65 162.87 24000.0 27.65 0.0 1.0 NaN NaN 3.0 0.0 13648.0 83.7 9.0 NaN NaN 0.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.0 0.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.0 0.0 NaN NaN NaN NaN 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
1 2500.0 2500.0 2500.0 15.27 59.83 30000.0 1.00 0.0 5.0 NaN NaN 3.0 0.0 1687.0 9.4 4.0 NaN NaN 0.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.0 0.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.0 0.0 NaN NaN NaN NaN 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
2 2400.0 2400.0 2400.0 15.96 84.33 12252.0 8.72 0.0 2.0 NaN NaN 2.0 0.0 2956.0 98.5 10.0 NaN NaN 0.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.0 0.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.0 0.0 NaN NaN NaN NaN 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
3 10000.0 10000.0 10000.0 13.49 339.31 49200.0 20.00 0.0 1.0 35.0 NaN 10.0 0.0 5598.0 21.0 37.0 NaN NaN 0.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.0 0.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.0 0.0 NaN NaN NaN NaN 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
4 3000.0 3000.0 3000.0 12.69 67.79 80000.0 17.94 0.0 0.0 38.0 NaN 15.0 0.0 27783.0 53.9 38.0 NaN NaN 0.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.0 0.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.0 0.0 NaN NaN NaN NaN 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

5 rows × 1926 columns


In [ ]: