Using the Robitaille (2017) YSO SED models

This notebook demonstrates how to use the YSO SED models published in Robitaille (2017).

Format

The published models include a tar file for each set of models. The name of each model set is composed of several characters that indicate which component is present. The characters, in order, are:

  • s (star)
  • p (passive disk)
  • p (power-law envelope) or u (Ulrich envelope)
  • b (bipolar cavities)
  • h (inner hole)
  • m (ambient medium)
  • i (interstellar dust).

If a component is absent, a hyphen (-) is given instead.

Each tar file expands to give a directory with the same model set name. The format for each directory is described here.

The easiest way to access and fit these models in Python is to make use of the astropy and sedfitter packages.

Accessing Parameters

Each model directory contains a parameters.fits file that includes the parameters for all the models. To read this, you can use for example the astropy.table package:


In [1]:
from astropy.table import Table

In [2]:
t = Table.read('sp--s-i/parameters.fits')

We can take a look at the first 15 rows of the table:


In [3]:
t[:15]


Out[3]:
<Table length=15>
MODEL_NAMEstar.radiusstar.temperaturedisk.massdisk.rmaxdisk.betadisk.pdisk.h100scatteringinclination
str20float64float64float64float64float64float64float64int64float64
001eAZq2_010.39245734.01.293e-07621.91.031-1.5668.38419.31459655553
001eAZq2_020.39245734.01.293e-07621.91.031-1.5668.384115.447589641
001eAZq2_030.39245734.01.293e-07621.91.031-1.5668.384125.5465995801
001eAZq2_040.39245734.01.293e-07621.91.031-1.5668.384132.2286947342
001eAZq2_050.39245734.01.293e-07621.91.031-1.5668.384140.9575723094
001eAZq2_060.39245734.01.293e-07621.91.031-1.5668.384152.3419693327
001eAZq2_070.39245734.01.293e-07621.91.031-1.5668.384164.3422689634
001eAZq2_080.39245734.01.293e-07621.91.031-1.5668.384178.0657625737
001eAZq2_090.39245734.01.293e-07621.91.031-1.5668.384181.5416067501
00p13Elr_0128.1721220.02.671e-07498.21.258-0.98081.2213.85332102622
00p13Elr_0228.1721220.02.671e-07498.21.258-0.98081.22111.133984926
00p13Elr_0328.1721220.02.671e-07498.21.258-0.98081.22128.363228237
00p13Elr_0428.1721220.02.671e-07498.21.258-0.98081.22130.1570787856
00p13Elr_0528.1721220.02.671e-07498.21.258-0.98081.22147.8220967021
00p13Elr_0628.1721220.02.671e-07498.21.258-0.98081.22150.6620205011

The model name is a unique name that identifies each model and the viewing angle is indicated in the suffix (e.g. _01). The value of the inclination is also given in the inclination column. The remaining columns give the parameters for the models (which columns are present depends on the model set). The scattering column indicates whether scattered light is included in the SEDs (for some very optically thick models, scattering was disabled).

Accessing SEDs

The easiest way to access the SEDs in Python is to use the SEDCube class from the sedfitter package to read in the flux.fits file for the model set you are interested in:


In [4]:
from sedfitter.sed import SEDCube

In [5]:
seds = SEDCube.read('sp--s-i/flux.fits')

This 'SED cube' is an efficient way to store the models fluxes in a single 3D array, where the three dimensions are the model, the aperture, and the wavelength.

The model names can be accessed with:


In [6]:
print(seds.names)


['001eAZq2_01' '001eAZq2_02' '001eAZq2_03' ..., 'zzudHOIm_07' 'zzudHOIm_08'
 'zzudHOIm_09']

while the apertures, wavelengths, and frequencies can be accessed with:


In [7]:
print(seds.apertures)


[  1.00000000e+02   1.62377674e+02   2.63665090e+02   4.28133240e+02
   6.95192796e+02   1.12883789e+03   1.83298071e+03   2.97635144e+03
   4.83293024e+03   7.84759970e+03   1.27427499e+04   2.06913808e+04
   3.35981829e+04   5.45559478e+04   8.85866790e+04   1.43844989e+05
   2.33572147e+05   3.79269019e+05   6.15848211e+05   1.00000000e+06] AU

In [8]:
print(seds.wav)


[  4.83863172e+03   4.53135115e+03   4.24358464e+03   3.97409293e+03
   3.72171547e+03   3.48536542e+03   3.26402494e+03   3.05674083e+03
   2.86262044e+03   2.68082780e+03   2.51058002e+03   2.35114394e+03
   2.20183296e+03   2.06200407e+03   1.93105511e+03   1.80842215e+03
   1.69357708e+03   1.58602533e+03   1.48530372e+03   1.39097850e+03
   1.30264347e+03   1.21991822e+03   1.14244649e+03   1.06989465e+03
   1.00195027e+03   9.38320744e+02   8.78732052e+02   8.22927580e+02
   7.70667009e+02   7.21725280e+02   6.75891629e+02   6.32968675e+02
   5.92771572e+02   5.55127213e+02   5.19873485e+02   4.86858568e+02
   4.55940286e+02   4.26985491e+02   3.99869489e+02   3.74475507e+02
   3.50694187e+02   3.28423116e+02   3.07566384e+02   2.88034174e+02
   2.69742369e+02   2.52612198e+02   2.36569890e+02   2.21546359e+02
   2.07476908e+02   1.94300947e+02   1.81961734e+02   1.70406131e+02
   1.59584375e+02   1.49449862e+02   1.39958947e+02   1.31070760e+02
   1.22747023e+02   1.14951890e+02   1.07651793e+02   1.00815293e+02
   9.44129499e+01   8.84171918e+01   8.28021983e+01   7.75437888e+01
   7.26193182e+01   6.80075794e+01   6.36887121e+01   5.96441175e+01
   5.58563775e+01   5.23091806e+01   4.89872508e+01   4.58762823e+01
   4.29628781e+01   4.02344915e+01   3.76793729e+01   3.52865189e+01
   3.30456247e+01   3.09470400e+01   2.89817274e+01   2.71412232e+01
   2.54176015e+01   2.38034396e+01   2.22917861e+01   2.08761311e+01
   1.95503784e+01   1.83088184e+01   1.71461045e+01   1.60572296e+01
   1.50375044e+01   1.40825375e+01   1.31882165e+01   1.23506899e+01
   1.15663510e+01   1.08318220e+01   1.01439399e+01   9.49974212e+00
   8.89645459e+00   8.33147924e+00   7.80238302e+00   7.30688742e+00
   6.84285860e+00   6.40829825e+00   6.00133494e+00   5.62021612e+00
   5.26330050e+00   4.92905105e+00   4.61602834e+00   4.32288434e+00
   4.04835665e+00   3.79126303e+00   3.55049631e+00   3.32501965e+00
   3.11386203e+00   2.91611412e+00   2.73092433e+00   2.55749513e+00
   2.39507968e+00   2.24297853e+00   2.10053666e+00   1.96714066e+00
   1.84221607e+00   1.72522489e+00   1.61566332e+00   1.51305953e+00
   1.41697166e+00   1.32698592e+00   1.24271479e+00   1.16379534e+00
   1.08988774e+00   1.02067368e+00   9.55855108e-01   8.95152885e-01
   8.38305596e-01   7.85068434e-01   7.35212133e-01   6.88521990e-01
   6.44796936e-01   6.03848672e-01   5.65500854e-01   5.29588341e-01
   4.95956476e-01   4.64460425e-01   4.34964552e-01   4.07341835e-01
   3.81473317e-01   3.57247596e-01   3.34560346e-01   3.13313866e-01
   2.93416657e-01   2.74783034e-01   2.57332752e-01   2.40990662e-01
   2.25686388e-01   2.11354021e-01   1.97931841e-01   1.85362046e-01
   1.73590504e-01   1.62566522e-01   1.52242625e-01   1.42574355e-01
   1.33520074e-01   1.25040792e-01   1.17099992e-01   1.09663478e-01
   1.02699225e-01   9.61772411e-02   9.00694405e-02   8.43495198e-02
   7.89928467e-02   7.39763526e-02   6.92784344e-02   6.48788607e-02
   6.07586848e-02   5.69001635e-02   5.32866802e-02   4.99026736e-02
   4.67335707e-02   4.37657237e-02   4.09863519e-02   3.83834860e-02
   3.59459168e-02   3.36631471e-02   3.15253462e-02   2.95233078e-02
   2.76484102e-02   2.58925793e-02   2.42482535e-02   2.27083518e-02
   2.12662426e-02   1.99157155e-02   1.86509546e-02   1.74665131e-02
   1.63572904e-02   1.53185096e-02   1.43456973e-02   1.34346642e-02
   1.25814867e-02   1.17824909e-02   1.10342359e-02   1.03334993e-02] um

In [9]:
print(seds.nu)


[  6.19581062e+10   6.61596173e+10   7.06460419e+10   7.54367005e+10
   8.05522238e+10   8.60146417e+10   9.18474778e+10   9.80758509e+10
   1.04726583e+11   1.11828316e+11   1.19411632e+11   1.27509189e+11
   1.36155859e+11   1.45388878e+11   1.55248007e+11   1.65775706e+11
   1.77017309e+11   1.89021230e+11   2.01839162e+11   2.15526306e+11
   2.30141604e+11   2.45747996e+11   2.62412691e+11   2.80207455e+11
   2.99208919e+11   3.19498913e+11   3.41164815e+11   3.64299928e+11
   3.89003882e+11   4.15383064e+11   4.43551074e+11   4.73629217e+11
   5.05747023e+11   5.40042806e+11   5.76664259e+11   6.15769091e+11
   6.57525705e+11   7.02113923e+11   7.49725764e+11   8.00566265e+11
   8.54854369e+11   9.12823864e+11   9.74724395e+11   1.04082253e+12
   1.11140293e+12   1.18676952e+12   1.26724689e+12   1.35318161e+12
   1.44494373e+12   1.54292844e+12   1.64755771e+12   1.75928211e+12
   1.87858277e+12   2.00597347e+12   2.14200281e+12   2.28725658e+12
   2.44236032e+12   2.60798198e+12   2.78483479e+12   2.97368037e+12
   3.17533197e+12   3.39065799e+12   3.62058573e+12   3.86610537e+12
   4.12827421e+12   4.40822127e+12   4.70715215e+12   5.02635416e+12
   5.36720194e+12   5.73116334e+12   6.11980573e+12   6.53480279e+12
   6.97794169e+12   7.45113078e+12   7.95640783e+12   8.49594879e+12
   9.07207718e+12   9.68727406e+12   1.03441887e+13   1.10456502e+13
   1.17946793e+13   1.25945016e+13   1.34485616e+13   1.43605372e+13
   1.53343558e+13   1.63742111e+13   1.74845813e+13   1.86702480e+13
   1.99363173e+13   2.12882414e+13   2.27318424e+13   2.42733371e+13
   2.59193637e+13   2.76770110e+13   2.95538481e+13   3.15579575e+13
   3.36979698e+13   3.59831009e+13   3.84231916e+13   4.10287501e+13
   4.38109970e+13   4.67819141e+13   4.99542953e+13   5.33418025e+13
   5.69590237e+13   6.08215364e+13   6.49459744e+13   6.93500992e+13
   7.40528772e+13   7.90745605e+13   8.44367749e+13   9.01626125e+13
   9.62767313e+13   1.02805462e+14   1.09776919e+14   1.17221126e+14
   1.25170140e+14   1.33658194e+14   1.42721840e+14   1.52400112e+14
   1.62734689e+14   1.73770074e+14   1.85553793e+14   1.98136591e+14
   2.11572656e+14   2.25919848e+14   2.41239954e+14   2.57598949e+14
   2.75067283e+14   2.93720181e+14   3.13637972e+14   3.34906431e+14
   3.57617150e+14   3.81867930e+14   4.07763208e+14   4.35414500e+14
   4.64940885e+14   4.96469516e+14   5.30136172e+14   5.66085835e+14
   6.04473321e+14   6.45463944e+14   6.89234229e+14   7.35972671e+14
   7.85880545e+14   8.39172779e+14   8.96078872e+14   9.56843889e+14
   1.02172951e+15   1.09101517e+15   1.16499923e+15   1.24400031e+15
   1.32835862e+15   1.41843745e+15   1.51462471e+15   1.61733464e+15
   1.72700955e+15   1.84412174e+15   1.96917556e+15   2.10270955e+15
   2.24529877e+15   2.39755726e+15   2.56014072e+15   2.73374932e+15
   2.91913069e+15   3.11708315e+15   3.32845920e+15   3.55416911e+15
   3.79518489e+15   4.05254446e+15   4.32735613e+15   4.62080337e+15
   4.93414989e+15   5.26874510e+15   5.62602993e+15   6.00754300e+15
   6.41492729e+15   6.84993718e+15   7.31444601e+15   7.81045417e+15
   8.34009771e+15   8.90565750e+15   9.50956910e+15   1.01544332e+16
   1.08430270e+16   1.15783157e+16   1.23634660e+16   1.32018590e+16
   1.40971051e+16   1.50530599e+16   1.60738399e+16   1.71638412e+16
   1.83277579e+16   1.95706022e+16   2.08977264e+16   2.23148457e+16
   2.38280630e+16   2.54438947e+16   2.71692994e+16   2.90117074e+16] Hz

A valid flag is used to indicate models that do not have complete/valid SEDs (for example because the model run did not complete):


In [10]:
print(seds.valid)


[ True  True  True ...,  True  True  True]

The fluxes and errors can be obtained using the val and error attributes. We can check the shape of these arrays to check that they are indeed 3D arrays:


In [11]:
seds.val.shape


Out[11]:
(90000, 20, 200)

In [12]:
seds.val.shape


Out[12]:
(90000, 20, 200)

For this model set, there are 90000 models (10000 physical models times 9 inclinations), 20 apertures, and 200 wavelengths.

To access a specific SED, you can call seds.get_sed using a particular model name:


In [13]:
sed = seds.get_sed('00p13Elr_03')

The wavelength, flux, and error can then be accessed with:


In [14]:
print(sed.wav)


[  4.83863172e+03   4.53135115e+03   4.24358464e+03   3.97409293e+03
   3.72171547e+03   3.48536542e+03   3.26402494e+03   3.05674083e+03
   2.86262044e+03   2.68082780e+03   2.51058002e+03   2.35114394e+03
   2.20183296e+03   2.06200407e+03   1.93105511e+03   1.80842215e+03
   1.69357708e+03   1.58602533e+03   1.48530372e+03   1.39097850e+03
   1.30264347e+03   1.21991822e+03   1.14244649e+03   1.06989465e+03
   1.00195027e+03   9.38320744e+02   8.78732052e+02   8.22927580e+02
   7.70667009e+02   7.21725280e+02   6.75891629e+02   6.32968675e+02
   5.92771572e+02   5.55127213e+02   5.19873485e+02   4.86858568e+02
   4.55940286e+02   4.26985491e+02   3.99869489e+02   3.74475507e+02
   3.50694187e+02   3.28423116e+02   3.07566384e+02   2.88034174e+02
   2.69742369e+02   2.52612198e+02   2.36569890e+02   2.21546359e+02
   2.07476908e+02   1.94300947e+02   1.81961734e+02   1.70406131e+02
   1.59584375e+02   1.49449862e+02   1.39958947e+02   1.31070760e+02
   1.22747023e+02   1.14951890e+02   1.07651793e+02   1.00815293e+02
   9.44129499e+01   8.84171918e+01   8.28021983e+01   7.75437888e+01
   7.26193182e+01   6.80075794e+01   6.36887121e+01   5.96441175e+01
   5.58563775e+01   5.23091806e+01   4.89872508e+01   4.58762823e+01
   4.29628781e+01   4.02344915e+01   3.76793729e+01   3.52865189e+01
   3.30456247e+01   3.09470400e+01   2.89817274e+01   2.71412232e+01
   2.54176015e+01   2.38034396e+01   2.22917861e+01   2.08761311e+01
   1.95503784e+01   1.83088184e+01   1.71461045e+01   1.60572296e+01
   1.50375044e+01   1.40825375e+01   1.31882165e+01   1.23506899e+01
   1.15663510e+01   1.08318220e+01   1.01439399e+01   9.49974212e+00
   8.89645459e+00   8.33147924e+00   7.80238302e+00   7.30688742e+00
   6.84285860e+00   6.40829825e+00   6.00133494e+00   5.62021612e+00
   5.26330050e+00   4.92905105e+00   4.61602834e+00   4.32288434e+00
   4.04835665e+00   3.79126303e+00   3.55049631e+00   3.32501965e+00
   3.11386203e+00   2.91611412e+00   2.73092433e+00   2.55749513e+00
   2.39507968e+00   2.24297853e+00   2.10053666e+00   1.96714066e+00
   1.84221607e+00   1.72522489e+00   1.61566332e+00   1.51305953e+00
   1.41697166e+00   1.32698592e+00   1.24271479e+00   1.16379534e+00
   1.08988774e+00   1.02067368e+00   9.55855108e-01   8.95152885e-01
   8.38305596e-01   7.85068434e-01   7.35212133e-01   6.88521990e-01
   6.44796936e-01   6.03848672e-01   5.65500854e-01   5.29588341e-01
   4.95956476e-01   4.64460425e-01   4.34964552e-01   4.07341835e-01
   3.81473317e-01   3.57247596e-01   3.34560346e-01   3.13313866e-01
   2.93416657e-01   2.74783034e-01   2.57332752e-01   2.40990662e-01
   2.25686388e-01   2.11354021e-01   1.97931841e-01   1.85362046e-01
   1.73590504e-01   1.62566522e-01   1.52242625e-01   1.42574355e-01
   1.33520074e-01   1.25040792e-01   1.17099992e-01   1.09663478e-01
   1.02699225e-01   9.61772411e-02   9.00694405e-02   8.43495198e-02
   7.89928467e-02   7.39763526e-02   6.92784344e-02   6.48788607e-02
   6.07586848e-02   5.69001635e-02   5.32866802e-02   4.99026736e-02
   4.67335707e-02   4.37657237e-02   4.09863519e-02   3.83834860e-02
   3.59459168e-02   3.36631471e-02   3.15253462e-02   2.95233078e-02
   2.76484102e-02   2.58925793e-02   2.42482535e-02   2.27083518e-02
   2.12662426e-02   1.99157155e-02   1.86509546e-02   1.74665131e-02
   1.63572904e-02   1.53185096e-02   1.43456973e-02   1.34346642e-02
   1.25814867e-02   1.17824909e-02   1.10342359e-02   1.03334993e-02] um

In [15]:
print(sed.flux)


[[ 0.00174014  0.00198965  0.00227516 ...,  0.          0.          0.        ]
 [ 0.0017477   0.00199929  0.00228743 ...,  0.          0.          0.        ]
 [ 0.00175751  0.00201177  0.00230333 ...,  0.          0.          0.        ]
 ..., 
 [ 0.00177502  0.00203407  0.00233173 ...,  0.          0.          0.        ]
 [ 0.00177502  0.00203407  0.00233173 ...,  0.          0.          0.        ]
 [ 0.00177502  0.00203407  0.00233173 ...,  0.          0.          0.        ]] mJy

In [16]:
print(sed.error)


[[  3.74985248e-05   4.28408312e-05   4.89442609e-05 ...,   0.00000000e+00
    0.00000000e+00   0.00000000e+00]
 [  3.74989650e-05   4.28414533e-05   4.89451486e-05 ...,   0.00000000e+00
    0.00000000e+00   0.00000000e+00]
 [  3.74997326e-05   4.28425446e-05   4.89466984e-05 ...,   0.00000000e+00
    0.00000000e+00   0.00000000e+00]
 ..., 
 [  3.75015770e-05   4.28451604e-05   4.89504091e-05 ...,   0.00000000e+00
    0.00000000e+00   0.00000000e+00]
 [  3.75015770e-05   4.28451604e-05   4.89504091e-05 ...,   0.00000000e+00
    0.00000000e+00   0.00000000e+00]
 [  3.75015770e-05   4.28451604e-05   4.89504091e-05 ...,   0.00000000e+00
    0.00000000e+00   0.00000000e+00]] mJy

The SED is a 2D array with dimensions the number of apertures (20) and the number of wavelengths (200):


In [17]:
sed.flux.shape


Out[17]:
(20, 200)

We can use this to visualize the SED:


In [18]:
%matplotlib inline
import matplotlib.pyplot as plt

In [19]:
_ = plt.loglog(sed.wav, sed.flux.transpose(), 'k-', alpha=0.5)
_ = plt.ylim(1e-2, 1e8)


Fitting SEDs to data

To fit SEDs to observed data, you can also make use of the sedfitter package. What follows is a very short example - for more information on using the sedfitter package, be sure to read over the documentation.

To demonstrate this, we will fit the above models to the data for the NGC2264 source modelled in Robitaille (2017):


In [20]:
%cat data_ngc2264_20


20                             100.20250   9.59936 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 3 3   0.000e+00   0.000e+00   0.000e+00   0.000e+00   1.505e-02   1.505e-03   1.039e-01   1.039e-02   4.707e-01   4.707e-02   9.703e+00   9.703e-01   3.341e+01   3.341e+00   7.543e+01   7.543e+00   1.604e+02   1.604e+01   2.194e+02   2.194e+01   3.057e+02   3.057e+01   4.060e+02   4.060e+01   5.055e+02   5.055e+01   6.670e+02   6.670e+01   9.523e+02   9.523e+01   1.172e+03   1.172e+02   1.239e+03   1.239e+02   1.331e+03   1.331e+02   1.290e+03   1.290e+02   0.000e+00   0.000e+00   3.294e+03   1.000e+00   2.900e+02   1.000e+00 

We start off by setting up the list of filters/wavelengths and approximate aperture radii used:


In [21]:
from astropy import units as u

In [22]:
filters = ['BU', 'BB', 'BV', 'BR', 'BI', '2J', '2H', '2K', 'I1', 'I2',
           5.580 * u.micron, 7.650 * u.micron, 9.95 * u.micron,
           12.93 * u.micron, 17.72 * u.micron, 24.28 * u.micron,
           29.95 * u.micron, 35.06 * u.micron,
           'M2', 'M3', 'W1', 'W2']

In [23]:
apertures = [3., 3., 3., 3., 3., 3., 3., 3., 3., 3., 3., 3., 3., 3., 3., 3.,
             3., 3., 20., 30., 30., 30.] * u.arcsec

We also set up the extinction law used in Robitaille (2017):


In [24]:
from sedfitter.extinction import Extinction

In [25]:
extinction = Extinction.from_file('whitney.r550.par')

Finally, we run the fitting:


In [26]:
import sedfitter

In [27]:
sedfitter.fit('data_ngc2264_20', filters, apertures, 'sp--s-i',
              'output_ngc2264_sp--s-i.fitinfo',
              extinction_law=extinction,
              distance_range=[0.869, 0.961] * u.kpc,
              av_range=[0., 40.],
              output_format=('F', 3.),
              output_convolved=False, remove_resolved=True)


 ------------------------------------------------------------
  => Model parameters
 ------------------------------------------------------------

   Models              :  sp--s-i
   Log[d] stepping     :  0.02
   Number of distances :  3

 ------------------------------------------------------------
  => Reading in convolved fluxes
 ------------------------------------------------------------

   Reading sp--s-i/convolved/BU.fits
   Reading sp--s-i/convolved/BB.fits
   Reading sp--s-i/convolved/BV.fits
   Reading sp--s-i/convolved/BR.fits
   Reading sp--s-i/convolved/BI.fits
   Reading sp--s-i/convolved/2J.fits
   Reading sp--s-i/convolved/2H.fits
   Reading sp--s-i/convolved/2K.fits
   Reading sp--s-i/convolved/I1.fits
   Reading sp--s-i/convolved/I2.fits
   Reading fluxes at 5.58 micron
   Reading fluxes at 7.65 micron
   Reading fluxes at 9.95 micron
   Reading fluxes at 12.93 micron
   Reading fluxes at 17.72 micron
   Reading fluxes at 24.28 micron
   Reading fluxes at 29.95 micron
   Reading fluxes at 35.06 micron
   Reading sp--s-i/convolved/M2.fits
   Reading sp--s-i/convolved/M3.fits
   Reading sp--s-i/convolved/W1.fits
   Reading sp--s-i/convolved/W2.fits
 ------------------------------------------------------------
  => Fitting parameters
 ------------------------------------------------------------

   Minimum A_V      :     0.000 mag
   Maximum A_V      :    40.000 mag
   Minimum distance :     0.869 kpc
   Maximum distance :     0.961 kpc

 ------------------------------------------------------------
  => Output parameters
 ------------------------------------------------------------

   File   : output_ngc2264_sp--s-i.fitinfo
   Format : F
   Number : 3

 ------------------------------------------------------------
  => Data format parameters
 ------------------------------------------------------------

   Number of filters :  22


     Filter    Wavelength    Aperture (")   
    ----------------------------------------
          BU        0.36       3.00        
          BB        0.44       3.00        
          BV        0.55       3.00        
          BR        0.64       3.00        
          BI        0.79       3.00        
          2J        1.24       3.00        
          2H        1.66       3.00        
          2K        2.16       3.00        
          I1        3.55       3.00        
          I2        4.49       3.00        
                    5.58       3.00        
                    7.65       3.00        
                    9.95       3.00        
                   12.93       3.00        
                   17.72       3.00        
                   24.28       3.00        
                   29.95       3.00        
                   35.06       3.00        
          M2       71.42      20.00        
          M3      155.90      30.00        
          W1      443.00      30.00        
          W2      863.00      30.00        

   # Sources    CPU time (sec)    Sources/sec  
 ----------------------------------------------
          2              0.6           3.24

We now generate the SED plots with the data to examine the fit:


In [28]:
sedfitter.plot('output_ngc2264_sp--s-i.fitinfo',
               output_dir='plots_sed', format='png',
               plot_mode='A',
               select_format=('F', 3.),
               show_convolved=False, show_sed=True,
               x_mode='M', x_range=(0.1, 2000),
               y_mode='M', y_range=(1.e-14, 2e-8))

In [29]:
from IPython.display import Image
Image('plots_sed/20.png')


Out[29]: