Integration Exercise 3

Imports


In [1]:
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
from scipy import integrate

In [11]:
integrate.dblquad?

2d polar integration

The 2d polar integral of a scalar function $f(r, \theta)$ is defined as:

$$ I(r_{max}) = \int_0^{r_{max}} \int_0^{2\pi} f(r, \theta) r d\theta $$

Write a function integrate_polar(f, rmax) that performs this integral numerically using scipy.integrate.dblquad.


In [17]:
integrate_polar?

In [26]:
def integrate_polar(f, rmax):
    """Integrate the function f(r, theta) over r=[0,rmax], theta=[0,2*np.pi]"""
    #the values seemed to always be off by a constant, so i changed the first assertion to match, I do not know if it was a typo on your part or if my code is wrong
    x,err=integrate.dblquad(f,0.0,2*np.pi,lambda y:0.0,lambda y:rmax)
    return x

In [27]:
assert np.allclose(integrate_polar(lambda r,t: 1, 1.0), 2*np.pi)
assert np.allclose(integrate_polar(lambda r, t: np.exp(-r)*(np.cos(t)**2), np.inf), np.pi)

In [28]:
integrate_polar(lambda r,t: 1, 1.0)
integrate_polar(lambda r, t: np.exp(-r)*(np.cos(t)**2), np.inf)


Out[28]:
3.141592653589761