In [2]:
%matplotlib inline
from matplotlib import pyplot as plt
import seaborn as sns
import numpy as np
Write a function find_peaks that finds and returns the indices of the local maxima in a sequence. Your function should:
In [20]:
np.array(range(5)).max()
list(range(1,5))
find_peaks([2,0,1,0,2,0,1])
Out[20]:
In [21]:
def find_peaks(a):
"""Find the indices of the local maxima in a sequence."""
b=[]
c=np.array(a)
if c[0]>c[1]:
b.append(0)
for i in range(1,len(c)-1):
if c[i]>c[i-1] and c[i]>c[i+1]:
b.append(i)
if c[len(c)-1]>c[len(c)-2]:
b.append(len(c)-1)
return b
In [22]:
p1 = find_peaks([2,0,1,0,2,0,1])
assert np.allclose(p1, np.array([0,2,4,6]))
p2 = find_peaks(np.array([0,1,2,3]))
assert np.allclose(p2, np.array([3]))
p3 = find_peaks([3,2,1,0])
assert np.allclose(p3, np.array([0]))
Here is a string with the first 10000 digits of $\pi$ (after the decimal). Write code to perform the following:
np.diff to find the distances between consequtive local maxima.
In [23]:
from sympy import pi, N
pi_digits_str = str(N(pi, 10001))[2:]
In [42]:
first_10000=np.array(list(pi_digits_str), dtype=int)
peaks=find_peaks(first_10000)
differences=np.diff(peaks)
plt.figure(figsize=(10,10))
plt.hist(differences, 20, (1,20))
plt.title('Hoe Far Apart the Local Maxima of the First 10,0000 Digits of $\pi$ Are')
plt.ylabel('Number of Occurences')
plt.xlabel('Distance Apart')
plt.tight_layout()
In [ ]:
assert True # use this for grading the pi digits histogram