Project Euler: Problem 6

https://projecteuler.net/problem=6

The sum of the squares of the first ten natural numbers is,

$$1^2 + 2^2 + ... + 10^2 = 385$$

The square of the sum of the first ten natural numbers is,

$$(1 + 2 + ... + 10)^2 = 552 = 3025$$

Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 − 385 = 2640.


In [13]:
def sum_squares_first100():
    total = 0
    x = 1
    while x in range(1, 101):
        total = total + x**2
        x += 1
    return total
print(sum_squares_first100())


338350

In [14]:
def comparison_sums(a, b):
    return a - b

In [18]:
c = sum_squares_first100()**2
d =sum_squares_first100()
print(comparison_sums(c, d))


114480384150

In [16]:
# This cell will be used for grading, leave it at the end of the notebook.

In [ ]: