We want $do_j/d\theta$ I guess?
So, let's break the formula down into two piece-wise linear parts:
When $i_j < \theta$:
$$ o_j = \theta $$And therefore:
$$ do_j/d\theta = 1 $$When $i_j > \theta$:
$$ o_j = i_j $$And therefore:
$$ do_j/d\theta = 0 $$So, the differnetial $do_j/d\theta$ is:
$$ do_j/d\theta = \begin{cases}1 \text{ when } i_j < \theta \\ 0 \text{ when } i_j > \theta \end{cases} $$Looking case by case, for the piece $i_j > \theta$, we have:
$$ o_j = \phi $$Therefore:
$$ \frac{\partial o_j}{\partial \theta} = 0 $$and:
$$ \frac{\partial o_j}{\partial \phi} = 1 $$For the case $i_j < \theta$, we have:
$$ o_j = i_j $$Therefore:
$$ \frac{\partial o_j}{\partial \theta} = 0 $$and:
$$ \frac{\partial o_j}{\partial \phi} = 0 $$