We want:
$$ I = \int_{-\infty}^\infty \Phi(\lambda x) \frac{1}{\sigma} \phi\left( \frac{x - \mu}{\sigma} \right) \, dx $$differentiate wrt $\mu$:
Dont think that will work. Let's try differentiating wrt $\lambda$.
Let's define:
$$ E_1 = \frac{\lambda}{\sigma} \phi(\lambda x)\phi\left( \frac{x-\mu}{\sigma} \right) \, dx $$Then:
$$ E_1 = \frac{\lambda}{\sigma} \frac{1}{2\pi} \exp \left( -\frac{1}{2} \left( \lambda^2 x^2 + \frac{(x - \mu)^2}{\sigma^2} \right) \right) $$Looking at this term:
$$ - \frac{\mu^2}{\lambda^2\sigma^2 + 1} + \mu^2 $$Therefore $$ \partial_\lambda I = \frac{\lambda}{2\pi\sigma} \exp \left(
{\lambda^2\sigma^2 + 1}
\right)
\right)
\int_{-\infty}^\infty
\exp \left(Substitute:
$$ y = \frac{1}{\sigma}\left( x\sqrt{\lambda^2\sigma^2 + 1} - \frac{\mu}{\sqrt{\lambda^2\sigma^2 + 1}} \right) $$Therefore:
$$ dy = \frac{\sqrt{\lambda^2\sigma^2 + 1}} {\sigma} \, dx $$Do substitution on the bounds, we have:
$$ x_1 = -\infty, x_2 = \infty $$$\sigma$ is positive, and $\sqrt{\lambda^2\sigma^2 + 1}$ is positive. Therefore:
$$ y_1 = -\infty, y_2 = \infty $$Therefore:
$$ \partial_\lambda I = \frac{\lambda}{\sigma\sqrt{2\pi}} \exp \left( -\frac{\mu^2\lambda^2} {2(\lambda^2\sigma^2+1)} \right) (1) \frac{\sqrt{\lambda^2\sigma^2+1}} {\sigma} $$Therefore:
$$ I = \frac{\lambda\sqrt{\lambda^2\sigma^2 + 1}} {\sigma^2 } \frac{\sqrt{\lambda^2\sigma^2 + 1}} {\mu\lambda} \Phi \left( \frac{\mu\lambda} {\sqrt{\lambda^2\sigma^2 + 1}} \right) $$not working....
Try:
Substitute:
$$ z = \frac{\mu}{\sqrt{\sigma^2 + \lambda^{-2}}} = \mu(\sigma^2 + \lambda^{-2})^{-1/2} $$Therefore:
$$ dz/d\lambda = (-1/2)\mu(\sigma^2 + \lambda^{-2})^{-3/2}(-2\lambda^{-3}) $$Not working either...
How about, try substitution in the original integral first?
We have:
$$ I_1 = \int_{-\infty}^\infty \Phi(\lambda x) \frac{1}{\sigma} \phi\left( \frac{x - \mu}{\sigma} \right) \, dx $$We know we can solve an integral in the form:
$$ I_2 = \int_{-\infty}^\infty \Phi\left( \frac{x - \mu}{\sigma} \right) \phi(x) \, dx $$Let's try a variable substitution:
$$ y = \frac{x - \mu}{\sigma} $$Therefore:
$$ dy/dx = 1/\sigma $$And:
$$ dx = \sigma\,dy $$For the limits, we have:
$$ x_1 = -\infty, x_2 = +\infty $$Changing the variable, these become, bearing in mind \mu > 0, and $\sigma > 0$:
Finally, $x$ in terms of $y$ is:
$$ x = y\sigma + \mu $$Therefore we have:
$$ I_1 = \int_{-\infty}^\infty \Phi \left( \lambda\sigma y + \lambda\mu \right) \phi(y) \, dy $$... which is in the same form as $I_1$. Yay :)
And we have that the solution for I_2 is:
$$ I_2 = \Phi\left( \frac{\mu} {\sqrt{1 + \sigma^2}} \right) $$But note that this was for negative $\mu$, whereas here we are constraining $\mu > 0$. The solution for $\mu > 0$ then will be:
$$ I_2[\mu > 0] = \Phi\left( \frac{-\mu} {\sqrt{1 + \sigma^2}} \right) $$So, this suggests strongly that the solution for $I_1$ is:
$$ I_1 = \Phi \left( \frac{-\left(-\frac{\mu}{\sigma}\right)} {\sqrt{1 + \frac{1}{\lambda^2\sigma^2}}} \right) $$Yay! :)