We are now getting close to the finish line with AeroPython! Our first few lessons introduced the fundamental flow solutions of potential flow, and we quickly learned that using our superposition powers we could get some useful results in aerodynamics.
The superposition of a doublet and a free stream gave the flow around a circular cylinder, and we learned about the D'Alembert paradox: the result of zero drag for potential flow around a cylinder. Adding a vortex at the center of the cylinder, we learned about lift and the Kutta-Joukowski theorem stating that lift is proporional to circulation: $L=\rho U \Gamma$. A most important result!
Adding together fundamental solutions of potential flow and seeing what we get when interpreting a dividing streamline as a solid body is often called an indirect method. This method goes all the way back to Rankine in 1871! But its applicability is limited because we can't stipulate a geometry and find the flow associated to it.
In Lesson 9, we learned that it is possible to stipulate first the geometry, and then solve for the source strengths on a panel discretization of the body that makes the flow tangent at the boundary. This is called a direct method and it took off in the 1960s with the work of Hess and Smith at Douglas Aircraft Company.
A set of panels (line segments in 2D) can represent the surface of any solid body immersed in a potential flow by making the source-sheet strengths such that the normal velocity at each panel is equal to zero. This is a very powerful idea! But you should realize that all the panel strengths are coupled to each other, which is why we end up with a linear system of equations.
For an arbitrary geometry, we need to build a set of panels according to some points that define the geometry. In this lesson, we will read from a file a geometry definition corresponding to a NACA0012 airfoil, create a set of panels, and solve for the source-sheet strengths to get flow around the airfoil.
Make sure you have studied Lesson 9 carefully before proceeding! We will not repeat the full mathematical formulation in this notebook, so refer back as needed.
First, load our favorite Python libraries, and the integrate
module from SciPy:
In [1]:
import math
import numpy
from scipy import integrate
from matplotlib import pyplot
Next, we read the body geometry from a file using the NumPy function loadtxt()
. The file comes from the Airfoil Tools website and it contains a set of coordinates for the standard NACA0012 symmetric profile. We saved the file in the resources
folder and load it from our local copy.
The geometry points get loaded into one NumPy array, so we separate the data into two arrays: x,y
(for better code readability). The subsequent code will plot the geometry of the airfoil.
In [2]:
# reads of the geometry from a data file
with open ('./resources/naca0012.dat') as file_name:
x, y = numpy.loadtxt(file_name, dtype=float, delimiter='\t', unpack=True)
# plots the geometry
%matplotlib inline
val_x, val_y = 0.1, 0.2
x_min, x_max = x.min(), x.max()
y_min, y_max = y.min(), y.max()
x_start, x_end = x_min-val_x*(x_max-x_min), x_max+val_x*(x_max-x_min)
y_start, y_end = y_min-val_y*(y_max-y_min), y_max+val_y*(y_max-y_min)
size = 10
pyplot.figure(figsize=(size, (y_end-y_start)/(x_end-x_start)*size))
pyplot.grid(True)
pyplot.xlabel('x', fontsize=16)
pyplot.ylabel('y', fontsize=16)
pyplot.xlim(x_start, x_end)
pyplot.ylim(y_start, y_end)
pyplot.plot(x, y, color='k', linestyle='-', linewidth=2);
Like in Lesson 9, we will create a discretization of the body geometry into panels (line segments in 2D). A panel's attributes are a starting point, an end point, a mid-point, its length and its orientation. See the following figure for the nomenclature used in the code and equations below.
We can modify the Panel
class from our previous notebook slightly, to work better for our study of flow over an airfoil. The only difference is that we identify points on the top or bottom surfaces with the keywords extrados
and intrados
, which is only used later for plotting results with different colors for the top and bottom surfaces of the profile.
In [3]:
class Panel:
"""Contains information related to a panel."""
def __init__(self, xa, ya, xb, yb):
"""Creates a panel.
Arguments
---------
xa, ya -- Cartesian coordinates of the first end-point.
xb, yb -- Cartesian coordinates of the second end-point.
"""
self.xa, self.ya = xa, ya
self.xb, self.yb = xb, yb
self.xc, self.yc = (xa+xb)/2, (ya+yb)/2 # control-point (center-point)
self.length = math.sqrt((xb-xa)**2+(yb-ya)**2) # length of the panel
# orientation of the panel (angle between x-axis and panel's normal)
if xb-xa <= 0.:
self.beta = math.acos((yb-ya)/self.length)
elif xb-xa > 0.:
self.beta = math.pi + math.acos(-(yb-ya)/self.length)
# location of the panel
if self.beta <= math.pi:
self.loc = 'extrados'
else:
self.loc = 'intrados'
self.sigma = 0. # source strength
self.vt = 0. # tangential velocity
self.cp = 0. # pressure coefficient
For the circular cylinder, the discretization into panels was really easy. This is the part that gets more complicated when you want to compute the flow around a general geometry, while the solution part is effectively the same as in Lesson 9.
The function below will create the panels from the geometry data that was read from a file. It is better to have small panels near the leading-edge and the trailing edge, where the curvature is large. One method to get a non uniform distribution around the airfoil is to first discretize a circle with diameter equal to the airfoil's chord, with the leading edge and trailing edge touching the circle at a node.
Then, we store the $x$-coordinate of the circle points, x_circle
, to be the $x$-coordinate of the panel nodes, x
, and project the $y$-coordinate of the circle points onto the airfoil by interpolation. We end up with a node distribution on the airfoil that is refined near the leading edge and the trailing edge. It will look like this:
With the discretization method just described, the function definePanels()
returns an array of objects, each one being an instance of the class Panel
and containing all information about a panel, given the desired number of panels and the set of body coordinates.
A few remarks about the implementation of the function definePanels()
:
x_circle
) since the $y$-coordinates of the panel nodes will be computed by interpolation;N+1
points, but the first and last points coincide;x[i+1]
in the different loops;x[I]
,y[I]
) and (x[I+1]
,y[I+1]
), on the foil such that the interval [x[I]
,x[I+1]
] contains the value x_ends[i]
; we use the keyword break
to get out of the loop;y_ends[i]
is computed by interpolation.
In [4]:
def define_panels(x, y, N=40):
"""Discretizes the geometry into panels using 'cosine' method.
Arguments
---------
x, y -- Cartesian coordinates of the geometry (1D arrays).
N - number of panels (default 40).
Returns
-------
panels -- Numpy array of panels.
"""
R = (x.max()-x.min())/2 # radius of the circle
x_center = (x.max()+x.min())/2 # x-coord of the center
x_circle = x_center + R*numpy.cos(numpy.linspace(0, 2*math.pi, N+1)) # x-coord of the circle points
x_ends = numpy.copy(x_circle) # projection of the x-coord on the surface
y_ends = numpy.empty_like(x_ends) # initialization of the y-coord Numpy array
x, y = numpy.append(x, x[0]), numpy.append(y, y[0]) # extend arrays using numpy.append
# computes the y-coordinate of end-points
I = 0
for i in range(N):
while I < len(x)-1:
if (x[I] <= x_ends[i] <= x[I+1]) or (x[I+1] <= x_ends[i] <= x[I]):
break
else:
I += 1
a = (y[I+1]-y[I])/(x[I+1]-x[I])
b = y[I+1] - a*x[I+1]
y_ends[i] = a*x_ends[i] + b
y_ends[N] = y_ends[0]
panels = numpy.empty(N, dtype=object)
for i in range(N):
panels[i] = Panel(x_ends[i], y_ends[i], x_ends[i+1], y_ends[i+1])
return panels
Now we can use this function, calling it with a desired number of panels whenever we execute the cell below. We also plot the resulting geometry.
In [5]:
N = 40 # number of panels
panels = define_panels(x, y, N) # discretizes of the geometry into panels
# plots the geometry and the panels
val_x, val_y = 0.1, 0.2
x_min, x_max = min(panel.xa for panel in panels), max(panel.xa for panel in panels)
y_min, y_max = min(panel.ya for panel in panels), max(panel.ya for panel in panels)
x_start, x_end = x_min-val_x*(x_max-x_min), x_max+val_x*(x_max-x_min)
y_start, y_end = y_min-val_y*(y_max-y_min), y_max+val_y*(y_max-y_min)
size = 10
pyplot.figure(figsize=(size, (y_end-y_start)/(x_end-x_start)*size))
pyplot.grid(True)
pyplot.xlabel('x', fontsize=16)
pyplot.ylabel('y', fontsize=16)
pyplot.xlim(x_start, x_end)
pyplot.ylim(y_start, y_end)
pyplot.plot(x, y, color='k', linestyle='-', linewidth=2)
pyplot.plot(numpy.append([panel.xa for panel in panels], panels[0].xa),
numpy.append([panel.ya for panel in panels], panels[0].ya),
linestyle='-', linewidth=1, marker='o', markersize=6, color='#CD2305');
The NACA0012 airfoil will be immersed in a uniform flow with velocity $U_\infty$ and an angle of attack $\alpha=0$. Even though it may seem like overkill to create a class for the freestream, we'll do it anyway. When creating a class, one is expecting to also create several intances of its objects. Here, we just have one freestream, so why define a class? Well, it makes the code more readable and does not block the programer from using the variable names u_inf
and alpha
for something else outside of the class.
Also, every time we need the freestream condition into a function, we will just have to pass the object as an argument and not all the attributes of the freestream.
In [6]:
class Freestream:
"""Freestream conditions."""
def __init__(self, u_inf=1.0, alpha=0.0):
"""Sets the freestream conditions.
Arguments
---------
u_inf -- Farfield speed (default 1.0).
alpha -- Angle of attack in degrees (default 0.0).
"""
self.u_inf = u_inf
self.alpha = alpha*math.pi/180 # degrees --> radians
In [7]:
# defines and creates the object freestream
u_inf = 1.0 # freestream spee
alpha = 0.0 # angle of attack (in degrees)
freestream = Freestream(u_inf, alpha) # instantiation of the object freestream
Enforcing the flow-tangency condition on each control point approximately makes the body geometry correspond to a dividing streamline (and the approximation improves if we represented the body with more and more panels). So, for each panel $i$, we make $u_n=0$ at $(x_{c_i},y_{c_i})$, which leads to the equation derived in the previous lesson:
$$u_{n_i} = \frac{\partial}{\partial n_i}\left\lbrace \phi\left(x_{c_i},y_{c_i}\right) \right\rbrace = 0$$i.e.
$$0 = U_\infty \cos\beta_i + \frac{\sigma_i}{2} + \sum_{j=1,j\neq i}^{N_p} \frac{\sigma_j}{2\pi} \int \frac{ \left(x_{c_i}-x_j(s_j)\right) \cos\beta_i + \left(y_{c_i}-y_j(s_j)\right) \sin\beta_i } {\left(x_{c_i}-x_j(s)\right)^2 + \left(y_{c_i}-y_j(s)\right)^2} {\rm d}s_j$$In the equation above, we calculate the derivative in the normal direction to enforce the flow tangency condition on each panel. But later, we will have to calculate the derivative in the tangential direction to compute the surface pressure coefficient. And, when we are interested in plotting the velocity field onto a mesh, we will have to calculate the derivative in the $x$- and $y$-direction.
Therefore the function below is similar to the one implemented in Lesson 9 to obtain the integrals along each panel, but we've generalized it to adapt to the direction of derivation (by means of two new arguments, dxdz
and dydz
, which respectively represent the value of $\frac{\partial x_{c_i}}{\partial z_i}$ and $\frac{\partial y_{c_i}}{\partial z_i}$, $z_i$ being the desired direction).
Moreover, the function is also more general in the sense of allowing any evaluation point, not just a control point on a panel (the argument p_i
has been replaced by the coordinates x
and y
of the control-point, and p_j
has been replaced with panel
).
In [8]:
def integral(x, y, panel, dxdz, dydz):
"""Evaluates the contribution of a panel at one point.
Arguments
---------
x, y -- Cartesian coordinates of the point.
panel -- panel which contribution is evaluated.
dxdz -- derivative of x in the z-direction.
dydz -- derivative of y in the z-direction.
Returns
-------
Integral over the panel of the influence at one point.
"""
def func(s):
return ( ((x - (panel.xa - math.sin(panel.beta)*s))*dxdz
+(y - (panel.ya + math.cos(panel.beta)*s))*dydz)
/ ((x - (panel.xa - math.sin(panel.beta)*s))**2
+(y - (panel.ya + math.cos(panel.beta)*s))**2) )
return integrate.quad(lambda s:func(s), 0., panel.length)[0]
Here, we build and solve the linear system of equations of the form
$$[A][\sigma] = [b]$$In building the matrix, below, we call the integral()
function with the correct values for the last parameters: $\cos \beta_i$ and $\sin\beta_i$, corresponding to a derivative in the normal direction.
Finally, we use linalg.solve()
from NumPy to solve the system and find the strength of each panel.
In [9]:
def build_matrix(panels):
"""Builds the source matrix.
Arguments
---------
panels -- array of panels.
Returns
-------
A -- NxN matrix (N is the number of panels).
"""
N = len(panels)
A = numpy.empty((N, N), dtype=float)
numpy.fill_diagonal(A, 0.5)
for i, p_i in enumerate(panels):
for j, p_j in enumerate(panels):
if i != j:
A[i,j] = 0.5/math.pi*integral(p_i.xc, p_i.yc, p_j, math.cos(p_i.beta), math.sin(p_i.beta))
return A
def build_rhs(panels, freestream):
"""Builds the RHS of the linear system.
Arguments
---------
panels -- array of panels.
freestream -- farfield conditions.
Returns
-------
b -- 1D array ((N+1)x1, N is the number of panels).
"""
b = numpy.empty(len(panels), dtype=float)
for i, panel in enumerate(panels):
b[i] = -freestream.u_inf * math.cos(freestream.alpha - panel.beta)
return b
In [10]:
A = build_matrix(panels) # computes the singularity matrix
b = build_rhs(panels, freestream) # computes the freestream RHS
In [11]:
# solves the linear system
sigma = numpy.linalg.solve(A, b)
for i, panel in enumerate(panels):
panel.sigma = sigma[i]
From Bernoulli's equation, the pressure coefficient on the $i$-th panel is
$$C_{p_i} = 1-\left(\frac{u_{t_i}}{U_\infty}\right)^2$$where $u_{t_i}$ is the tangential component of the velocity at the center point of the $i$-th panel,
$$u_{t_i} = -U_\infty \sin\beta_i + \sum_{j=1}^{N_p} \frac{\sigma_j}{2\pi} \int \frac{ \left(x_{c_i}-x_j(s_j)\right) \frac{\partial x_{c_i}}{\partial t_i} + \left(y_{c_i}-y_j(s_j)\right) \frac{\partial y_{c_i}}{\partial t_i} } {\left(x_{c_i}-x_j(s)\right)^2 + \left(y_{c_i}-y_j(s)\right)^2} {\rm d}s_j$$with
$$\frac{\partial x_{c_i}}{\partial t_i} = -\sin\beta_i \quad\text{and} \quad \frac{\partial y_{c_i}}{\partial t_i} = \cos\beta_i$$Notice that below we call the function integral()
with different arguments: $-\sin\beta_i$ and $\cos\beta_i$ to get the derivation in the tangential direction.
In [12]:
def get_tangential_velocity(panels, freestream):
"""Computes the tangential velocity on the surface.
Arguments
---------
panels -- array of panels.
freestream -- farfield conditions.
"""
N = len(panels)
A = numpy.empty((N, N), dtype=float)
numpy.fill_diagonal(A, 0.0)
for i, p_i in enumerate(panels):
for j, p_j in enumerate(panels):
if i != j:
A[i,j] = 0.5/math.pi*integral(p_i.xc, p_i.yc, p_j, -math.sin(p_i.beta), math.cos(p_i.beta))
b = freestream.u_inf * numpy.sin([freestream.alpha - panel.beta for panel in panels])
sigma = numpy.array([panel.sigma for panel in panels])
vt = numpy.dot(A, sigma) + b
for i, panel in enumerate(panels):
panel.vt = vt[i]
In [13]:
# computes the tangential velocity at the center-point of each panel
get_tangential_velocity(panels, freestream)
In [14]:
def get_pressure_coefficient(panels, freestream):
"""Computes the surface pressure coefficients.
Arguments
---------
panels -- array of panels.
freestream -- farfield conditions.
"""
for panel in panels:
panel.cp = 1.0 - (panel.vt/freestream.u_inf)**2
In [15]:
# computes the surface pressure coefficients
get_pressure_coefficient(panels, freestream)
In [16]:
# plots the surface pressure coefficient
val_x, val_y = 0.1, 0.2
x_min, x_max = min( panel.xa for panel in panels ), max( panel.xa for panel in panels )
cp_min, cp_max = min( panel.cp for panel in panels ), max( panel.cp for panel in panels )
x_start, x_end = x_min-val_x*(x_max-x_min), x_max+val_x*(x_max-x_min)
y_start, y_end = cp_min-val_y*(cp_max-cp_min), cp_max+val_y*(cp_max-cp_min)
pyplot.figure(figsize=(10, 6))
pyplot.grid(True)
pyplot.xlabel('x', fontsize=16)
pyplot.ylabel('$C_p$', fontsize=16)
pyplot.plot([panel.xc for panel in panels if panel.loc == 'extrados'],
[panel.cp for panel in panels if panel.loc == 'extrados'],
color='r', linestyle='-', linewidth=2, marker='o', markersize=6)
pyplot.plot([panel.xc for panel in panels if panel.loc == 'intrados'],
[panel.cp for panel in panels if panel.loc == 'intrados'],
color='b', linestyle='-', linewidth=1, marker='o', markersize=6)
pyplot.legend(['extrados', 'intrados'], loc='best', prop={'size':14})
pyplot.xlim(x_start, x_end)
pyplot.ylim(y_start, y_end)
pyplot.gca().invert_yaxis()
pyplot.title('Number of panels : %d' % N);
For a closed body, the sum of all the source strengths must be zero. If not, it means the body would be adding or absorbing mass from the flow! Therfore, we should have
$$\sum_{j=1}^{N} \sigma_j l_j = 0$$where $l_j$ is the length of the $j^{\text{th}}$ panel.
With this, we can get a measure of the accuracy of the source panel method.
In [17]:
# calculates the accuracy
accuracy = sum([panel.sigma*panel.length for panel in panels])
print '--> sum of source/sink strengths:', accuracy
To get a streamline plot, we have to create a mesh (like we've done in all AeroPython lessons!) and compute the velocity field onto it. Knowing the strength of every panel, we find the $x$-component of the velocity by taking derivative of the velocity potential in the $x$-direction, and the $y$-component by taking derivative in the $y$-direction:
$$u\left(x,y\right) = \frac{\partial}{\partial x}\left\lbrace \phi\left(x,y\right) \right\rbrace$$$$v\left(x,y\right) = \frac{\partial}{\partial y}\left\lbrace \phi\left(x,y\right) \right\rbrace$$Notice that here we call the funcion integral()
with $1,0$ as the final arguments when calculating the derivatives in the $x$-direction, and $0,1$ for the derivatives in th $y$-direction.
In [18]:
def get_velocity_field(panels, freestream, X, Y):
"""Returns the velocity field.
Arguments
---------
panels -- array of panels.
freestream -- farfield conditions.
X, Y -- mesh grid.
"""
Nx, Ny = X.shape
u, v = numpy.empty((Nx, Ny), dtype=float), numpy.empty((Nx, Ny), dtype=float)
for i in xrange(Nx):
for j in xrange(Ny):
u[i,j] = freestream.u_inf*math.cos(freestream.alpha)\
+ 0.5/math.pi*sum([p.sigma*integral(X[i,j], Y[i,j], p, 1, 0) for p in panels])
v[i,j] = freestream.u_inf*math.sin(freestream.alpha)\
+ 0.5/math.pi*sum([p.sigma*integral(X[i,j], Y[i,j], p, 0, 1) for p in panels])
return u, v
In [19]:
# defines a mesh grid
Nx, Ny = 20, 20 # number of points in the x and y directions
val_x, val_y = 1.0, 2.0
x_min, x_max = min( panel.xa for panel in panels ), max( panel.xa for panel in panels )
y_min, y_max = min( panel.ya for panel in panels ), max( panel.ya for panel in panels )
x_start, x_end = x_min-val_x*(x_max-x_min), x_max+val_x*(x_max-x_min)
y_start, y_end = y_min-val_y*(y_max-y_min), y_max+val_y*(y_max-y_min)
X, Y = numpy.meshgrid(numpy.linspace(x_start, x_end, Nx), numpy.linspace(y_start, y_end, Ny))
# computes the velicity field on the mesh grid
u, v = get_velocity_field(panels, freestream, X, Y)
In [20]:
# plots the velocity field
size=10
pyplot.figure(figsize=(size, (y_end-y_start)/(x_end-x_start)*size))
pyplot.xlabel('x', fontsize=16)
pyplot.ylabel('y', fontsize=16)
pyplot.streamplot(X, Y, u, v, density=1, linewidth=1, arrowsize=1, arrowstyle='->')
pyplot.fill([panel.xc for panel in panels],
[panel.yc for panel in panels],
color='k', linestyle='solid', linewidth=2, zorder=2)
pyplot.xlim(x_start, x_end)
pyplot.ylim(y_start, y_end)
pyplot.title('Streamlines around a NACA 0012 airfoil, AoA = %.1f' % alpha);
We can now calculate the pressure coefficient. In Lesson 9, we computed the pressure coefficient on the surface of the circular cylinder. That was useful because we have an analytical solution for the surface pressure on a cylinder in potential flow. For an airfoil, we are interested to see how the pressure looks all around it, and we make a contour plot in the flow domain.
In [21]:
# computes the pressure field
cp = 1.0 - (u**2+v**2)/freestream.u_inf**2
# plots the pressure field
size=12
pyplot.figure(figsize=(1.1*size, (y_end-y_start)/(x_end-x_start)*size))
pyplot.xlabel('x', fontsize=16)
pyplot.ylabel('y', fontsize=16)
contf = pyplot.contourf(X, Y, cp, levels=numpy.linspace(-2.0, 1.0, 100), extend='both')
cbar = pyplot.colorbar(contf)
cbar.set_label('$C_p$', fontsize=16)
cbar.set_ticks([-2.0, -1.0, 0.0, 1.0])
pyplot.fill([panel.xc for panel in panels],
[panel.yc for panel in panels],
color='k', linestyle='solid', linewidth=2, zorder=2)
pyplot.xlim(x_start, x_end)
pyplot.ylim(y_start, y_end)
pyplot.title('Contour of pressure field');
We've learned to use a source-sheet to represent any solid body: first a circular cylinder (which we knew we could get by superposing a doublet and a freestream), and now an airfoil.
But what is the feature of airfoils that makes them interesting? Well, the fact that we can use them to generate lift and make things that fly, of course! But what do we need to generate lift? Think, think ... what is it?
In [22]:
from IPython.core.display import HTML
def css_styling():
styles = open('../styles/custom.css', 'r').read()
return HTML(styles)
css_styling()
Out[22]: