In [2]:
%matplotlib inline
from matplotlib import pyplot as plt
import seaborn as sns
import numpy as np
Write a function find_peaks that finds and returns the indices of the local maxima in a sequence. Your function should:
In [3]:
def find_peaks(a):
"""Find the indices of the local maxima in a sequence."""
# local maxima defined as being greater than the one adjacent cell on either side
max_ind = []
for i in range(len(a)):
if i == 0:
if a[i] > a[i + 1]:
max_ind.append(i)
elif i == (len(a) - 1):
if a[i] > a[i - 1]:
max_ind.append(i)
else:
if a[i] > a[i - 1] and a[i] > a[i + 1]:
max_ind.append(i)
return(max_ind)
#raise NotImplementedError()
In [5]:
p1 = find_peaks([2,0,1,0,2,0,1])
assert np.allclose(p1, np.array([0,2,4,6]))
p2 = find_peaks(np.array([0,1,2,3]))
assert np.allclose(p2, np.array([3]))
p3 = find_peaks([3,2,1,0])
assert np.allclose(p3, np.array([0]))
Out[5]:
Here is a string with the first 10000 digits of $\pi$ (after the decimal). Write code to perform the following:
np.diff to find the distances between consequtive local maxima.
In [4]:
from sympy import pi, N
pi_digits_str = str(N(pi, 10001))[2:]
In [8]:
pi_spaced = ' '.join(pi_digits_str)
pi_dig = np.array([int(x) for x in pi_spaced.split(' ')])
inds = find_peaks(pi_dig)
dists = np.diff(inds)
plt.hist(dists)
#raise NotImplementedError()
Out[8]:
In [ ]:
assert True # use this for grading the pi digits histogram