Project Euler: Problem 6

https://projecteuler.net/problem=6

The sum of the squares of the first ten natural numbers is,

$$1^2 + 2^2 + ... + 10^2 = 385$$

The square of the sum of the first ten natural numbers is,

$$(1 + 2 + ... + 10)^2 = 552 = 3025$$

Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 − 385 = 2640.


In [2]:
num = 100
### Sum of Squares
sumsq = sum([x ** 2 for x in range(1, num+1)])

### Square of Sum
sqsum = sum(range(1, num+1)) ** 2

#print(sumsq)

#print(sqsum)

print(sqsum - sumsq)

#raise NotImplementedError()


25164150

In [ ]:
# This cell will be used for grading, leave it at the end of the notebook.