Import these first-- I auto import them every time!:
In [1]:
    
#! cat /Users/gully/.ipython/profile_default/startup/start.ipy
    
In [2]:
    
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%config InlineBackend.figure_format = 'retina'
%matplotlib inline
    
In [3]:
    
import pandas as pd
    
In [4]:
    
from astropy import units as u
from astropy.coordinates import SkyCoord
    
Retrieve Data file from here:
https://github.com/BrownDwarf/ApJdataFrames/blob/master/data/Luhman2012/tbl1_plusSimbad.csv
In [5]:
    
d1 = pd.read_csv('../../ApJdataFrames/data/Luhman2012/tbl1_plusSimbad.csv') #local version
    
In [6]:
    
d1 = d1[~d1.RA.isnull()]
    
In [7]:
    
d1.columns
    
    Out[7]:
In [8]:
    
c1 = SkyCoord(d1.RA.values, d1.DEC.values, unit=(u.hourangle, u.deg), frame='icrs')
    
In [9]:
    
df_list = []
    
This takes a finite amount of RAM, but should be fine for modern laptops.
In [10]:
    
for i in range(16):
    df_list.append(pd.read_csv('../data/TgasSource_000-000-{:03d}.csv'.format(i)))
    
In [11]:
    
tt = pd.concat(df_list, ignore_index=True)
    
In [12]:
    
plt.figure(figsize=(10,4))
ax = sns.jointplot(tt.ra, tt.dec, kind='hex', size=8)
ax.ax_joint.plot(c1.ra.deg, c1.dec.deg, '.', alpha=0.5)
    
    Out[12]:
    
    
In [13]:
    
cg = SkyCoord(tt.ra.values, tt.dec.values, unit=(u.deg, u.deg), frame='icrs')
    
In [15]:
    
idx, d2d, blah = c1.match_to_catalog_sky(cg)
    
In [16]:
    
vec_units = d2d.to(u.arcsecond)
vec = vec_units.value
    
In [17]:
    
bins = np.arange(0, 4, 0.2)
sns.distplot(vec, bins=bins, kde=False),
plt.xlim(0,4)
plt.xlabel('match separation (arcsec)')
    
    Out[17]:
    
Forced to match to nearest neighbor
In [21]:
    
len(set(idx)), idx.shape[0]
    
    Out[21]:
... yielding some redundancies in cross matching
In [22]:
    
tt_sub = tt.iloc[idx]
tt_sub = tt_sub.reset_index()
tt_sub = tt_sub.drop('index', axis=1)
    
In [23]:
    
d1 = d1.reset_index()
d1 = d1.drop('index', axis=1)
    
In [24]:
    
x1 = pd.concat([d1, tt_sub], axis=1)
    
In [25]:
    
x1.shape
    
    Out[25]:
In [26]:
    
col_order = d1.columns.values.tolist() + tt_sub.columns.values.tolist()
x1 = x1[col_order]
x0 = x1.copy()
    
In [27]:
    
x0['xmatch_sep_as'] = vec
    
In [28]:
    
x0['Gaia_match'] = vec < 2.0 #Fairly liberal, 1.0 might be better.
    
In [29]:
    
plt.figure(figsize=(8,4))
bins = np.arange(2, 14, 0.2)
sns.distplot(x0.parallax[x0.Gaia_match], bins=bins)
#sns.distplot(1.0/(x0.parallax[x0.Gaia_match]/1000.0))
plt.xlabel('Parallax (mas)')
plt.savefig('../results/luhman_mamajek2012.png', dpi=300)
    
    
    
In [32]:
    
x0.Gaia_match.sum(), len(d1)
    
    Out[32]:
112 out of 862 have Gaia parallaxes... that seems high for some reason?
In [40]:
    
plt.figure(figsize=(10,4))
ax = sns.jointplot(tt.ra, tt.dec, kind='hex', size=8, xlim=(230,255), ylim=(-40,-10))
ax.ax_joint.plot(c1.ra.deg, c1.dec.deg, '.', alpha=0.5)
ax.ax_joint.scatter(x0.ra[x0.Gaia_match], x0.dec[x0.Gaia_match], 
                    s=x0.parallax[x0.Gaia_match]**3*0.2, c='r',alpha=0.5)
    
    Out[40]: