Gaia

Real data!

gully
Sept 14, 2016

Outline:

  1. More exploring

Import these first-- I auto import them every time!:


In [1]:
#! cat /Users/gully/.ipython/profile_default/startup/start.ipy

In [2]:
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%config InlineBackend.figure_format = 'retina'
%matplotlib inline

In [3]:
import pandas as pd

1. Explore!


In [4]:
df_list = []

This takes a finite amount of RAM, but should be fine for modern laptops.


In [5]:
for i in range(16):
    df_list.append(pd.read_csv('../data/TgasSource_000-000-{:03d}.csv'.format(i)))

In [6]:
tt = pd.concat(df_list, ignore_index=True)

Plots


In [7]:
plt.plot(tt.parallax, tt.parallax_error, '.', alpha=0.005)
plt.xscale('log')



In [9]:
tt.columns


Out[9]:
Index(['hip', 'tycho2_id', 'solution_id', 'source_id', 'random_index',
       'ref_epoch', 'ra', 'ra_error', 'dec', 'dec_error', 'parallax',
       'parallax_error', 'pmra', 'pmra_error', 'pmdec', 'pmdec_error',
       'ra_dec_corr', 'ra_parallax_corr', 'ra_pmra_corr', 'ra_pmdec_corr',
       'dec_parallax_corr', 'dec_pmra_corr', 'dec_pmdec_corr',
       'parallax_pmra_corr', 'parallax_pmdec_corr', 'pmra_pmdec_corr',
       'astrometric_n_obs_al', 'astrometric_n_obs_ac',
       'astrometric_n_good_obs_al', 'astrometric_n_good_obs_ac',
       'astrometric_n_bad_obs_al', 'astrometric_n_bad_obs_ac',
       'astrometric_delta_q', 'astrometric_excess_noise',
       'astrometric_excess_noise_sig', 'astrometric_primary_flag',
       'astrometric_relegation_factor', 'astrometric_weight_al',
       'astrometric_weight_ac', 'astrometric_priors_used',
       'matched_observations', 'duplicated_source',
       'scan_direction_strength_k1', 'scan_direction_strength_k2',
       'scan_direction_strength_k3', 'scan_direction_strength_k4',
       'scan_direction_mean_k1', 'scan_direction_mean_k2',
       'scan_direction_mean_k3', 'scan_direction_mean_k4', 'phot_g_n_obs',
       'phot_g_mean_flux', 'phot_g_mean_flux_error', 'phot_g_mean_mag',
       'phot_variable_flag', 'l', 'b', 'ecl_lon', 'ecl_lat'],
      dtype='object')

In [10]:
plt.plot(tt.phot_g_mean_mag, tt.parallax_error, '.', alpha=0.005)


Out[10]:
[<matplotlib.lines.Line2D at 0x121667ba8>]

In [13]:
sns.set_style('ticks')

In [16]:
sns.jointplot(tt.phot_g_mean_mag, tt.parallax_error, kind='hex', stat_func=None)
plt.savefig('../results/photG_vs_parErr.png', dpi=300)


The end.