In [ ]:
import random
import graphistry as g
import pandas as pd
In [ ]:
g.__version__
In [ ]:
API_KEY = 'Go to www.graphistry.com/api-request to get your API key'
In [2]:
g.register(api=2, key=API_KEY)
In many datasets, there may ~1000 possible attributes, though each node/edge likely only has 5-100.
Attributes are selected from 100 different float values
The time-to-render for an uploaded dataset should be 20s.
Opening the edges panel, and seeing the results, should also be within 20s.
In [ ]:
pd.DataFrame([{'a': 1, 'b': 2}, {'b': 2, 'c': 3}, {'c': 4, 'd': 5}])
In [ ]:
edges = [{'src': x, 'dst': (x + 1) % 8000} for x in range(0, 8000)]
for i, edge in enumerate(edges):
for fld in range(0, 100):
edge['fld' + str((i + fld) % 1000)] = fld
edges = pd.DataFrame(edges)
edges[:3]
In [ ]:
g.edges(edges).bind(source='src', destination='dst').plot()
In [ ]:
edges = [{'src': x, 'dst': (x + 1) % 8000} for x in range(0, 8000)]
for i, edge in enumerate(edges):
for fld in range(0, 100):
edge['fld' + str((i + fld) % 1000)] = random.random()
edges = pd.DataFrame(edges)
edges[:3]
In [ ]:
g.edges(edges).bind(source='src', destination='dst').plot()
In [ ]:
edges = [{'src': x, 'dst': (x + 1) % 8000} for x in range(0, 8000)]
for i, edge in enumerate(edges):
for fld in range(0, 100):
edge['fld' + str((i + fld) % 1000)] = 'String: ' + str(fld)
edges = pd.DataFrame(edges)
edges[:3]
In [ ]:
g.edges(edges).bind(source='src', destination='dst').plot()
In [ ]:
edges = [{'src': x, 'dst': (x + 1) % 8000} for x in range(0, 8000)]
for i, edge in enumerate(edges):
for fld in range(0, 100):
edge['fld' + str((i + fld) % 1000)] = 'String: ' + str(random.random())
edges = pd.DataFrame(edges)
edges[:3]
In [ ]:
g.edges(edges).bind(source='src', destination='dst').plot()