Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at
https://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
In [0]:
! pip install -q -U xarray matplotlib
! rm -rf data-driven-discretization-1d
! git clone https://github.com/google/data-driven-discretization-1d.git
! pip install -q -e data-driven-discretization-1d
# install the seaborn bug-fix from https://github.com/mwaskom/seaborn/pull/1602
! pip install -U -q git+git://github.com/stfnrpplngr/seaborn.git@309a9de383fac4db1c66dbf87815c4ba0c439c59
|████████████████████████████████| 634kB 3.3MB/s
Cloning into 'data-driven-discretization-1d'...
remote: Enumerating objects: 4, done.
remote: Counting objects: 100% (4/4), done.
remote: Compressing objects: 100% (4/4), done.
remote: Total 342 (delta 0), reused 2 (delta 0), pack-reused 338
Receiving objects: 100% (342/342), 147.61 KiB | 2.95 MiB/s, done.
Resolving deltas: 100% (248/248), done.
|████████████████████████████████| 3.0MB 3.3MB/s
|████████████████████████████████| 235kB 58.5MB/s
|████████████████████████████████| 51kB 9.2MB/s
|████████████████████████████████| 61kB 9.4MB/s
|████████████████████████████████| 81kB 12.3MB/s
|████████████████████████████████| 153kB 60.9MB/s
|████████████████████████████████| 1.2MB 54.2MB/s
|████████████████████████████████| 112kB 40.4MB/s
Building wheel for avro-python3 (setup.py) ... done
Building wheel for hdfs (setup.py) ... done
Building wheel for oauth2client (setup.py) ... done
Building wheel for dill (setup.py) ... done
ERROR: pydrive 1.3.1 has requirement oauth2client>=4.0.0, but you'll have oauth2client 3.0.0 which is incompatible.
ERROR: multiprocess 0.70.9 has requirement dill>=0.3.1, but you'll have dill 0.3.0 which is incompatible.
ERROR: botocore 1.13.27 has requirement python-dateutil<2.8.1,>=2.1; python_version >= "2.7", but you'll have python-dateutil 2.8.1 which is incompatible.
ERROR: albumentations 0.1.12 has requirement imgaug<0.2.7,>=0.2.5, but you'll have imgaug 0.2.9 which is incompatible.
Building wheel for seaborn (setup.py) ... done
In [0]:
# Ensure we're using Tensorflow 1.x in Colab. If not using Colab, remove this magic.
%tensorflow_version 1.x
import tensorflow as tf
assert tf.__version__[:2] == '1.'
WARNING:tensorflow:
The TensorFlow contrib module will not be included in TensorFlow 2.0.
For more information, please see:
* https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md
* https://github.com/tensorflow/addons
* https://github.com/tensorflow/io (for I/O related ops)
If you depend on functionality not listed there, please file an issue.
WARNING:tensorflow:From /content/data-driven-discretization-1d/pde_superresolution/model.py:422: The name tf.AUTO_REUSE is deprecated. Please use tf.compat.v1.AUTO_REUSE instead.
WARNING:tensorflow:From /content/data-driven-discretization-1d/pde_superresolution/training.py:305: The name tf.Session is deprecated. Please use tf.compat.v1.Session instead.
WARNING:tensorflow:From /content/data-driven-discretization-1d/pde_superresolution/training.py:510: The name tf.train.SessionRunHook is deprecated. Please use tf.estimator.SessionRunHook instead.
WARNING:tensorflow:From /content/data-driven-discretization-1d/pde_superresolution/training.py:528: The name tf.summary.FileWriter is deprecated. Please use tf.compat.v1.summary.FileWriter instead.
In [0]:
! gsutil cp gs://data-driven-discretization-public/training-data/burgers.h5 .
Copying gs://data-driven-discretization-public/training-data/burgers.h5...
/ [1 files][ 39.1 MiB/ 39.1 MiB]
Operation completed over 1 objects/39.1 MiB.
In [0]:
%%time
! python data-driven-discretization-1d/pde_superresolution/scripts/run_training.py \
--checkpoint_dir burgers-checkpoints \
--equation burgers \
--hparams resample_factor=16,learning_stops=[5000,10000] \
--input_path burgers.h5
/usr/local/lib/python3.6/dist-packages/absl/flags/_validators.py:359: UserWarning: Flag --checkpoint_dir has a non-None default value; therefore, mark_flag_as_required will pass even if flag is not specified in the command line!
'command line!' % flag_name)
I1203 23:45:04.894261 140321653876608 run_training.py:61] Loading training data
WARNING:tensorflow:From /content/data-driven-discretization-1d/pde_superresolution/utils.py:47: The name tf.gfile.Copy is deprecated. Please use tf.io.gfile.copy instead.
W1203 23:45:04.896073 140321653876608 module_wrapper.py:139] From /content/data-driven-discretization-1d/pde_superresolution/utils.py:47: The name tf.gfile.Copy is deprecated. Please use tf.io.gfile.copy instead.
I1203 23:45:04.977255 140321653876608 run_training.py:66] Inputs have shape (10000, 512)
WARNING:tensorflow:From /content/data-driven-discretization-1d/pde_superresolution/scripts/run_training.py:69: The name tf.gfile.MakeDirs is deprecated. Please use tf.io.gfile.makedirs instead.
W1203 23:45:04.980407 140321653876608 module_wrapper.py:139] From /content/data-driven-discretization-1d/pde_superresolution/scripts/run_training.py:69: The name tf.gfile.MakeDirs is deprecated. Please use tf.io.gfile.makedirs instead.
I1203 23:45:04.982903 140321653876608 run_training.py:75] Starting training loop
WARNING:tensorflow:From /content/data-driven-discretization-1d/pde_superresolution/duckarray.py:94: where (from tensorflow.python.ops.array_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.where in 2.0, which has the same broadcast rule as np.where
W1203 23:45:10.928888 140321653876608 deprecation.py:323] From /content/data-driven-discretization-1d/pde_superresolution/duckarray.py:94: where (from tensorflow.python.ops.array_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.where in 2.0, which has the same broadcast rule as np.where
WARNING:tensorflow:From /content/data-driven-discretization-1d/pde_superresolution/model.py:396: unbatch (from tensorflow.python.data.experimental.ops.batching) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.data.Dataset.unbatch()`.
W1203 23:45:11.609592 140321653876608 deprecation.py:323] From /content/data-driven-discretization-1d/pde_superresolution/model.py:396: unbatch (from tensorflow.python.data.experimental.ops.batching) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.data.Dataset.unbatch()`.
WARNING:tensorflow:From /content/data-driven-discretization-1d/pde_superresolution/training.py:349: DatasetV1.make_one_shot_iterator (from tensorflow.python.data.ops.dataset_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use `for ... in dataset:` to iterate over a dataset. If using `tf.estimator`, return the `Dataset` object directly from your input function. As a last resort, you can use `tf.compat.v1.data.make_one_shot_iterator(dataset)`.
W1203 23:45:11.634932 140321653876608 deprecation.py:323] From /content/data-driven-discretization-1d/pde_superresolution/training.py:349: DatasetV1.make_one_shot_iterator (from tensorflow.python.data.ops.dataset_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use `for ... in dataset:` to iterate over a dataset. If using `tf.estimator`, return the `Dataset` object directly from your input function. As a last resort, you can use `tf.compat.v1.data.make_one_shot_iterator(dataset)`.
WARNING:tensorflow:From /content/data-driven-discretization-1d/pde_superresolution/training.py:353: The name tf.local_variables_initializer is deprecated. Please use tf.compat.v1.local_variables_initializer instead.
W1203 23:45:11.951882 140321653876608 module_wrapper.py:139] From /content/data-driven-discretization-1d/pde_superresolution/training.py:353: The name tf.local_variables_initializer is deprecated. Please use tf.compat.v1.local_variables_initializer instead.
I1203 23:45:42.533940 140321653876608 training.py:414] baseline_error: [[ 0.60345622 8.21094341 0.85900945]
[288.06875612 93.86809145 224.03838766]]
I1203 23:45:42.536137 140321653876608 training.py:588] Training with hyperparameters:
HParams([('absolute_error_weight', 1.0), ('base_batch_size', 128), ('coefficient_grid_min_size', 6), ('conservative', True), ('ensure_unbiased_coefficients', False), ('equation', 'burgers'), ('equation_kwargs', '{"k_min": 3, "num_points": 512, "eta": 0.01, "k_max": 6}'), ('error_floor', [0.00039408463635481894, 0.00448509119451046, 0.00017447709251428028]), ('error_floor_quantile', 0.1), ('error_max', 0.0), ('error_scale', [1.6571210525761082, 0.12178868499243486, 1.1641315429048973, 0.0034713934737676537, 0.010653247387755959, 0.004463520785097974]), ('eval_interval', 250), ('filter_size', 32), ('frac_training', 0.8), ('ground_truth_order', -1), ('integrated_solution_weight', 0.0), ('kernel_size', 5), ('learning_rates', [0.001, 0.0001]), ('learning_stops', [5000, 10000]), ('model_target', 'coefficients'), ('noise_amplitude', 0.0), ('noise_probability', 0.0), ('noise_type', 'white'), ('nonlinearity', 'relu'), ('num_layers', 3), ('num_time_steps', 0), ('numerical_flux', False), ('polynomial_accuracy_order', 1), ('polynomial_accuracy_scale', 1.0), ('relative_error_weight', 0.0), ('resample_factor', 16), ('space_derivatives_weight', 0.0), ('time_derivative_weight', 1.0)])
WARNING:tensorflow:From /content/data-driven-discretization-1d/pde_superresolution/training.py:591: The name tf.gfile.GFile is deprecated. Please use tf.io.gfile.GFile instead.
W1203 23:45:42.540976 140321653876608 module_wrapper.py:139] From /content/data-driven-discretization-1d/pde_superresolution/training.py:591: The name tf.gfile.GFile is deprecated. Please use tf.io.gfile.GFile instead.
I1203 23:45:42.545437 140321653876608 training.py:594] Setting up training
WARNING:tensorflow:From /content/data-driven-discretization-1d/pde_superresolution/model.py:403: shuffle_and_repeat (from tensorflow.contrib.data.python.ops.shuffle_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.data.experimental.shuffle_and_repeat(...)`.
W1203 23:45:43.009394 140321653876608 deprecation.py:323] From /content/data-driven-discretization-1d/pde_superresolution/model.py:403: shuffle_and_repeat (from tensorflow.contrib.data.python.ops.shuffle_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.data.experimental.shuffle_and_repeat(...)`.
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow_core/contrib/data/python/ops/shuffle_ops.py:54: shuffle_and_repeat (from tensorflow.python.data.experimental.ops.shuffle_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.data.Dataset.shuffle(buffer_size, seed)` followed by `tf.data.Dataset.repeat(count)`. Static tf.data optimizations will take care of using the fused implementation.
W1203 23:45:43.011180 140321653876608 deprecation.py:323] From /usr/local/lib/python3.6/dist-packages/tensorflow_core/contrib/data/python/ops/shuffle_ops.py:54: shuffle_and_repeat (from tensorflow.python.data.experimental.ops.shuffle_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.data.Dataset.shuffle(buffer_size, seed)` followed by `tf.data.Dataset.repeat(count)`. Static tf.data optimizations will take care of using the fused implementation.
WARNING:tensorflow:From /content/data-driven-discretization-1d/pde_superresolution/model.py:442: The name tf.variable_scope is deprecated. Please use tf.compat.v1.variable_scope instead.
W1203 23:45:43.168518 140321653876608 module_wrapper.py:139] From /content/data-driven-discretization-1d/pde_superresolution/model.py:442: The name tf.variable_scope is deprecated. Please use tf.compat.v1.variable_scope instead.
WARNING:tensorflow:From /content/data-driven-discretization-1d/pde_superresolution/layers.py:135: conv1d (from tensorflow.python.layers.convolutional) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.keras.layers.Conv1D` instead.
W1203 23:45:43.184805 140321653876608 deprecation.py:323] From /content/data-driven-discretization-1d/pde_superresolution/layers.py:135: conv1d (from tensorflow.python.layers.convolutional) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.keras.layers.Conv1D` instead.
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow_core/python/layers/convolutional.py:218: Layer.apply (from tensorflow.python.keras.engine.base_layer) is deprecated and will be removed in a future version.
Instructions for updating:
Please use `layer.__call__` method instead.
W1203 23:45:43.194310 140321653876608 deprecation.py:323] From /usr/local/lib/python3.6/dist-packages/tensorflow_core/python/layers/convolutional.py:218: Layer.apply (from tensorflow.python.keras.engine.base_layer) is deprecated and will be removed in a future version.
Instructions for updating:
Please use `layer.__call__` method instead.
WARNING:tensorflow:From /content/data-driven-discretization-1d/pde_superresolution/model.py:532: calling extract_image_patches (from tensorflow.python.ops.array_ops) with ksizes is deprecated and will be removed in a future version.
Instructions for updating:
ksizes is deprecated, use sizes instead
W1203 23:45:43.324556 140321653876608 deprecation.py:506] From /content/data-driven-discretization-1d/pde_superresolution/model.py:532: calling extract_image_patches (from tensorflow.python.ops.array_ops) with ksizes is deprecated and will be removed in a future version.
Instructions for updating:
ksizes is deprecated, use sizes instead
WARNING:tensorflow:From /content/data-driven-discretization-1d/pde_superresolution/training.py:203: The name tf.train.get_or_create_global_step is deprecated. Please use tf.compat.v1.train.get_or_create_global_step instead.
W1203 23:45:43.382651 140321653876608 module_wrapper.py:139] From /content/data-driven-discretization-1d/pde_superresolution/training.py:203: The name tf.train.get_or_create_global_step is deprecated. Please use tf.compat.v1.train.get_or_create_global_step instead.
WARNING:tensorflow:From /content/data-driven-discretization-1d/pde_superresolution/training.py:206: The name tf.train.piecewise_constant is deprecated. Please use tf.compat.v1.train.piecewise_constant instead.
W1203 23:45:43.389847 140321653876608 module_wrapper.py:139] From /content/data-driven-discretization-1d/pde_superresolution/training.py:206: The name tf.train.piecewise_constant is deprecated. Please use tf.compat.v1.train.piecewise_constant instead.
WARNING:tensorflow:From /content/data-driven-discretization-1d/pde_superresolution/training.py:212: The name tf.train.AdamOptimizer is deprecated. Please use tf.compat.v1.train.AdamOptimizer instead.
W1203 23:45:43.420139 140321653876608 module_wrapper.py:139] From /content/data-driven-discretization-1d/pde_superresolution/training.py:212: The name tf.train.AdamOptimizer is deprecated. Please use tf.compat.v1.train.AdamOptimizer instead.
WARNING:tensorflow:From /content/data-driven-discretization-1d/pde_superresolution/training.py:214: The name tf.get_collection is deprecated. Please use tf.compat.v1.get_collection instead.
W1203 23:45:43.421527 140321653876608 module_wrapper.py:139] From /content/data-driven-discretization-1d/pde_superresolution/training.py:214: The name tf.get_collection is deprecated. Please use tf.compat.v1.get_collection instead.
WARNING:tensorflow:From /content/data-driven-discretization-1d/pde_superresolution/training.py:214: The name tf.GraphKeys is deprecated. Please use tf.compat.v1.GraphKeys instead.
W1203 23:45:43.423277 140321653876608 module_wrapper.py:139] From /content/data-driven-discretization-1d/pde_superresolution/training.py:214: The name tf.GraphKeys is deprecated. Please use tf.compat.v1.GraphKeys instead.
WARNING:tensorflow:From /content/data-driven-discretization-1d/pde_superresolution/training.py:274: DatasetV1.make_initializable_iterator (from tensorflow.python.data.ops.dataset_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use `for ... in dataset:` to iterate over a dataset. If using `tf.estimator`, return the `Dataset` object directly from your input function. As a last resort, you can use `tf.compat.v1.data.make_initializable_iterator(dataset)`.
W1203 23:45:44.292121 140321653876608 deprecation.py:323] From /content/data-driven-discretization-1d/pde_superresolution/training.py:274: DatasetV1.make_initializable_iterator (from tensorflow.python.data.ops.dataset_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use `for ... in dataset:` to iterate over a dataset. If using `tf.estimator`, return the `Dataset` object directly from your input function. As a last resort, you can use `tf.compat.v1.data.make_initializable_iterator(dataset)`.
WARNING:tensorflow:From /content/data-driven-discretization-1d/pde_superresolution/training.py:290: The name tf.metrics.mean is deprecated. Please use tf.compat.v1.metrics.mean instead.
W1203 23:45:44.619048 140321653876608 module_wrapper.py:139] From /content/data-driven-discretization-1d/pde_superresolution/training.py:290: The name tf.metrics.mean is deprecated. Please use tf.compat.v1.metrics.mean instead.
WARNING:tensorflow:From /content/data-driven-discretization-1d/pde_superresolution/training.py:601: The name tf.trainable_variables is deprecated. Please use tf.compat.v1.trainable_variables instead.
W1203 23:45:45.375782 140321653876608 module_wrapper.py:139] From /content/data-driven-discretization-1d/pde_superresolution/training.py:601: The name tf.trainable_variables is deprecated. Please use tf.compat.v1.trainable_variables instead.
I1203 23:45:45.379871 140321653876608 training.py:601] Variables: <tf.Variable 'predict_coefficients/conv1d/kernel:0' shape=(5, 1, 32) dtype=float32_ref>
<tf.Variable 'predict_coefficients/conv1d/bias:0' shape=(32,) dtype=float32_ref>
<tf.Variable 'predict_coefficients/conv1d_1/kernel:0' shape=(5, 32, 32) dtype=float32_ref>
<tf.Variable 'predict_coefficients/conv1d_1/bias:0' shape=(32,) dtype=float32_ref>
<tf.Variable 'predict_coefficients/conv1d_2/kernel:0' shape=(5, 32, 9) dtype=float32_ref>
<tf.Variable 'predict_coefficients/conv1d_2/bias:0' shape=(9,) dtype=float32_ref>
WARNING:tensorflow:From /content/data-driven-discretization-1d/pde_superresolution/training.py:606: The name tf.train.MonitoredTrainingSession is deprecated. Please use tf.compat.v1.train.MonitoredTrainingSession instead.
W1203 23:45:45.383056 140321653876608 module_wrapper.py:139] From /content/data-driven-discretization-1d/pde_superresolution/training.py:606: The name tf.train.MonitoredTrainingSession is deprecated. Please use tf.compat.v1.train.MonitoredTrainingSession instead.
INFO:tensorflow:Create CheckpointSaverHook.
I1203 23:45:45.386346 140321653876608 basic_session_run_hooks.py:541] Create CheckpointSaverHook.
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow_core/python/training/training_util.py:236: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version.
Instructions for updating:
Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts.
W1203 23:45:46.124861 140321653876608 deprecation.py:323] From /usr/local/lib/python3.6/dist-packages/tensorflow_core/python/training/training_util.py:236: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version.
Instructions for updating:
Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts.
WARNING:tensorflow:From /content/data-driven-discretization-1d/pde_superresolution/training.py:517: The name tf.train.Saver is deprecated. Please use tf.compat.v1.train.Saver instead.
W1203 23:45:46.140482 140321653876608 module_wrapper.py:139] From /content/data-driven-discretization-1d/pde_superresolution/training.py:517: The name tf.train.Saver is deprecated. Please use tf.compat.v1.train.Saver instead.
INFO:tensorflow:Graph was finalized.
I1203 23:45:46.291293 140321653876608 monitored_session.py:240] Graph was finalized.
INFO:tensorflow:Running local_init_op.
I1203 23:45:46.435282 140321653876608 session_manager.py:500] Running local_init_op.
INFO:tensorflow:Done running local_init_op.
I1203 23:45:46.465731 140321653876608 session_manager.py:502] Done running local_init_op.
INFO:tensorflow:Saving checkpoints for 0 into burgers-checkpoints/model.ckpt.
I1203 23:45:55.916505 140321653876608 basic_session_run_hooks.py:606] Saving checkpoints for 0 into burgers-checkpoints/model.ckpt.
WARNING:tensorflow:It seems that global step (tf.train.get_global_step) has not been increased. Current value (could be stable): 0 vs previous value: 0. You could increase the global step by passing tf.train.get_global_step() to Optimizer.apply_gradients or Optimizer.minimize.
W1203 23:46:05.249061 140321653876608 basic_session_run_hooks.py:724] It seems that global step (tf.train.get_global_step) has not been increased. Current value (could be stable): 0 vs previous value: 0. You could increase the global step by passing tf.train.get_global_step() to Optimizer.apply_gradients or Optimizer.minimize.
INFO:tensorflow:global_step/sec: 3.19493
I1203 23:46:29.933029 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 3.19493
INFO:tensorflow:global_step/sec: 40.8766
I1203 23:46:32.379339 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 40.8766
WARNING:tensorflow:It seems that global step (tf.train.get_global_step) has not been increased. Current value (could be stable): 250 vs previous value: 250. You could increase the global step by passing tf.train.get_global_step() to Optimizer.apply_gradients or Optimizer.minimize.
W1203 23:46:35.032467 140321653876608 basic_session_run_hooks.py:724] It seems that global step (tf.train.get_global_step) has not been increased. Current value (could be stable): 250 vs previous value: 250. You could increase the global step by passing tf.train.get_global_step() to Optimizer.apply_gradients or Optimizer.minimize.
WARNING:tensorflow:It seems that global step (tf.train.get_global_step) has not been increased. Current value (could be stable): 250 vs previous value: 250. You could increase the global step by passing tf.train.get_global_step() to Optimizer.apply_gradients or Optimizer.minimize.
W1203 23:46:36.175446 140321653876608 basic_session_run_hooks.py:724] It seems that global step (tf.train.get_global_step) has not been increased. Current value (could be stable): 250 vs previous value: 250. You could increase the global step by passing tf.train.get_global_step() to Optimizer.apply_gradients or Optimizer.minimize.
WARNING:tensorflow:It seems that global step (tf.train.get_global_step) has not been increased. Current value (could be stable): 250 vs previous value: 250. You could increase the global step by passing tf.train.get_global_step() to Optimizer.apply_gradients or Optimizer.minimize.
W1203 23:46:37.204634 140321653876608 basic_session_run_hooks.py:724] It seems that global step (tf.train.get_global_step) has not been increased. Current value (could be stable): 250 vs previous value: 250. You could increase the global step by passing tf.train.get_global_step() to Optimizer.apply_gradients or Optimizer.minimize.
WARNING:tensorflow:It seems that global step (tf.train.get_global_step) has not been increased. Current value (could be stable): 250 vs previous value: 250. You could increase the global step by passing tf.train.get_global_step() to Optimizer.apply_gradients or Optimizer.minimize.
W1203 23:46:38.361568 140321653876608 basic_session_run_hooks.py:724] It seems that global step (tf.train.get_global_step) has not been increased. Current value (could be stable): 250 vs previous value: 250. You could increase the global step by passing tf.train.get_global_step() to Optimizer.apply_gradients or Optimizer.minimize.
I1203 23:46:40.147816 140321653876608 training.py:632] loss: 0.0142702, abs_error: u=1.0185/u_t=0.2112/u_x=3.8437, rel_error: u=0.9945/u_t=0.3596/u_x=3.5060, below_baseline: u=0.4917/u_t=0.7405/u_x=0.1433
WARNING:tensorflow:From /content/data-driven-discretization-1d/pde_superresolution/training.py:531: The name tf.Summary is deprecated. Please use tf.compat.v1.Summary instead.
W1203 23:46:40.149385 140321653876608 module_wrapper.py:139] From /content/data-driven-discretization-1d/pde_superresolution/training.py:531: The name tf.Summary is deprecated. Please use tf.compat.v1.Summary instead.
INFO:tensorflow:global_step/sec: 11.0273
I1203 23:46:41.447734 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 11.0273
INFO:tensorflow:global_step/sec: 39.7021
I1203 23:46:43.966491 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 39.7021
INFO:tensorflow:global_step/sec: 38.4677
I1203 23:46:46.566096 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 38.4677
I1203 23:46:52.005413 140321653876608 training.py:632] loss: 0.0076599, abs_error: u=1.0361/u_t=0.1461/u_x=3.4906, rel_error: u=1.0151/u_t=0.2444/u_x=2.1905, below_baseline: u=0.4752/u_t=0.8190/u_x=0.2506
INFO:tensorflow:global_step/sec: 12.6144
I1203 23:46:54.493491 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 12.6144
INFO:tensorflow:global_step/sec: 39.3646
I1203 23:46:57.033842 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 39.3646
I1203 23:47:03.815283 140321653876608 training.py:632] loss: 0.0059022, abs_error: u=1.0367/u_t=0.1225/u_x=3.3475, rel_error: u=1.0107/u_t=0.2018/u_x=1.9500, below_baseline: u=0.4742/u_t=0.8525/u_x=0.2860
INFO:tensorflow:global_step/sec: 12.4498
I1203 23:47:05.066109 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 12.4498
INFO:tensorflow:global_step/sec: 39.8742
I1203 23:47:07.574066 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 39.8742
INFO:tensorflow:global_step/sec: 38.6909
I1203 23:47:10.158584 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 38.6909
I1203 23:47:15.729634 140321653876608 training.py:632] loss: 0.0055453, abs_error: u=1.0570/u_t=0.1183/u_x=3.2657, rel_error: u=1.0308/u_t=0.1951/u_x=1.8591, below_baseline: u=0.4569/u_t=0.8612/u_x=0.2990
INFO:tensorflow:global_step/sec: 12.3743
I1203 23:47:18.239926 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 12.3743
INFO:tensorflow:global_step/sec: 41.3142
I1203 23:47:20.660337 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 41.3142
I1203 23:47:27.327455 140321653876608 training.py:632] loss: 0.0047293, abs_error: u=1.0453/u_t=0.1053/u_x=3.2233, rel_error: u=1.0230/u_t=0.1707/u_x=1.8763, below_baseline: u=0.4592/u_t=0.8758/u_x=0.2994
INFO:tensorflow:global_step/sec: 12.6527
I1203 23:47:28.563783 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 12.6527
INFO:tensorflow:global_step/sec: 41.634
I1203 23:47:30.965684 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 41.634
INFO:tensorflow:global_step/sec: 41.4526
I1203 23:47:33.378105 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 41.4526
I1203 23:47:38.792744 140321653876608 training.py:632] loss: 0.0039173, abs_error: u=1.0535/u_t=0.0941/u_x=3.2035, rel_error: u=1.0341/u_t=0.1544/u_x=1.9450, below_baseline: u=0.4493/u_t=0.8872/u_x=0.2909
INFO:tensorflow:global_step/sec: 12.7325
I1203 23:47:41.231976 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 12.7325
INFO:tensorflow:global_step/sec: 41.8383
I1203 23:47:43.622123 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 41.8383
I1203 23:47:50.515396 140321653876608 training.py:632] loss: 0.0035711, abs_error: u=1.0553/u_t=0.0888/u_x=3.1837, rel_error: u=1.0358/u_t=0.1457/u_x=1.9875, below_baseline: u=0.4392/u_t=0.8942/u_x=0.2795
INFO:tensorflow:global_step/sec: 12.2583
I1203 23:47:51.779829 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 12.2583
INFO:tensorflow:global_step/sec: 41.7737
I1203 23:47:54.173666 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 41.7737
INFO:tensorflow:global_step/sec: 41.4287
I1203 23:47:56.587476 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 41.4287
I1203 23:48:01.936426 140321653876608 training.py:632] loss: 0.0038178, abs_error: u=1.0469/u_t=0.0944/u_x=3.1613, rel_error: u=1.0282/u_t=0.1519/u_x=1.9898, below_baseline: u=0.4486/u_t=0.8896/u_x=0.2742
INFO:tensorflow:global_step/sec: 12.8642
I1203 23:48:04.360953 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 12.8642
INFO:tensorflow:global_step/sec: 41.8907
I1203 23:48:06.748126 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 41.8907
I1203 23:48:13.589339 140321653876608 training.py:632] loss: 0.0039418, abs_error: u=1.0526/u_t=0.0942/u_x=3.1593, rel_error: u=1.0318/u_t=0.1468/u_x=2.0136, below_baseline: u=0.4350/u_t=0.8923/u_x=0.2680
INFO:tensorflow:global_step/sec: 12.4428
I1203 23:48:14.784904 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 12.4428
INFO:tensorflow:global_step/sec: 42.0237
I1203 23:48:17.164601 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 42.0237
INFO:tensorflow:global_step/sec: 40.8829
I1203 23:48:19.610525 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 40.8829
I1203 23:48:25.281014 140321653876608 training.py:632] loss: 0.0031872, abs_error: u=1.0535/u_t=0.0823/u_x=3.1649, rel_error: u=1.0329/u_t=0.1321/u_x=2.0519, below_baseline: u=0.4353/u_t=0.9032/u_x=0.2624
INFO:tensorflow:global_step/sec: 12.2261
I1203 23:48:27.789866 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 12.2261
INFO:tensorflow:global_step/sec: 41.6686
I1203 23:48:30.189627 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 41.6686
I1203 23:48:36.200243 140321653876608 training.py:632] loss: 0.0030274, abs_error: u=1.0554/u_t=0.0812/u_x=3.1619, rel_error: u=1.0370/u_t=0.1303/u_x=2.0619, below_baseline: u=0.4345/u_t=0.9062/u_x=0.2602
INFO:tensorflow:global_step/sec: 13.8086
I1203 23:48:37.431529 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 13.8086
INFO:tensorflow:global_step/sec: 41.195
I1203 23:48:39.859009 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 41.195
INFO:tensorflow:global_step/sec: 40.5268
I1203 23:48:42.326590 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 40.5268
I1203 23:48:47.810109 140321653876608 training.py:632] loss: 0.0031377, abs_error: u=1.0515/u_t=0.0842/u_x=3.1511, rel_error: u=1.0332/u_t=0.1337/u_x=2.0572, below_baseline: u=0.4369/u_t=0.9045/u_x=0.2617
INFO:tensorflow:global_step/sec: 12.7082
I1203 23:48:50.195475 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 12.7082
INFO:tensorflow:global_step/sec: 41.7313
I1203 23:48:52.591759 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 41.7313
I1203 23:48:59.189972 140321653876608 training.py:632] loss: 0.0027610, abs_error: u=1.0555/u_t=0.0750/u_x=3.1584, rel_error: u=1.0349/u_t=0.1202/u_x=2.0703, below_baseline: u=0.4336/u_t=0.9127/u_x=0.2607
INFO:tensorflow:global_step/sec: 12.8016
I1203 23:49:00.403244 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 12.8016
INFO:tensorflow:global_step/sec: 41.6994
I1203 23:49:02.801399 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 41.6994
INFO:tensorflow:global_step/sec: 41.0802
I1203 23:49:05.235616 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 41.0802
I1203 23:49:10.342381 140321653876608 training.py:632] loss: 0.0029251, abs_error: u=1.0477/u_t=0.0787/u_x=3.1472, rel_error: u=1.0275/u_t=0.1236/u_x=2.0619, below_baseline: u=0.4389/u_t=0.9108/u_x=0.2617
INFO:tensorflow:global_step/sec: 13.2763
I1203 23:49:12.767831 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 13.2763
INFO:tensorflow:global_step/sec: 42.1048
I1203 23:49:15.142872 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 42.1048
I1203 23:49:21.888789 140321653876608 training.py:632] loss: 0.0025965, abs_error: u=1.0529/u_t=0.0717/u_x=3.1472, rel_error: u=1.0300/u_t=0.1145/u_x=2.0753, below_baseline: u=0.4319/u_t=0.9156/u_x=0.2609
INFO:tensorflow:global_step/sec: 12.5186
I1203 23:49:23.130990 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 12.5186
INFO:tensorflow:global_step/sec: 41.1492
I1203 23:49:25.561200 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 41.1492
INFO:tensorflow:global_step/sec: 40.7038
I1203 23:49:28.017958 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 40.7038
I1203 23:49:33.235394 140321653876608 training.py:632] loss: 0.0027659, abs_error: u=1.0543/u_t=0.0776/u_x=3.1288, rel_error: u=1.0307/u_t=0.1244/u_x=2.0508, below_baseline: u=0.4293/u_t=0.9102/u_x=0.2632
INFO:tensorflow:global_step/sec: 13.0396
I1203 23:49:35.686892 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 13.0396
INFO:tensorflow:global_step/sec: 41.362
I1203 23:49:38.104590 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 41.362
I1203 23:49:44.597151 140321653876608 training.py:632] loss: 0.0026315, abs_error: u=1.0554/u_t=0.0742/u_x=3.1240, rel_error: u=1.0317/u_t=0.1173/u_x=2.0589, below_baseline: u=0.4286/u_t=0.9160/u_x=0.2630
INFO:tensorflow:global_step/sec: 12.9301
I1203 23:49:45.838576 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 12.9301
INFO:tensorflow:global_step/sec: 41.197
I1203 23:49:48.265857 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 41.197
INFO:tensorflow:global_step/sec: 41.0412
I1203 23:49:50.702410 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 41.0412
I1203 23:49:56.594991 140321653876608 training.py:632] loss: 0.0024083, abs_error: u=1.0480/u_t=0.0690/u_x=3.1237, rel_error: u=1.0247/u_t=0.1088/u_x=2.0609, below_baseline: u=0.4422/u_t=0.9216/u_x=0.2624
INFO:tensorflow:global_step/sec: 12.0302
I1203 23:49:59.014806 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 12.0302
INFO:tensorflow:global_step/sec: 42.0918
I1203 23:50:01.390568 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 42.0918
I1203 23:50:07.999467 140321653876608 training.py:632] loss: 0.0035240, abs_error: u=1.0533/u_t=0.0921/u_x=3.1030, rel_error: u=1.0314/u_t=0.1362/u_x=2.0504, below_baseline: u=0.4351/u_t=0.9040/u_x=0.2636
INFO:tensorflow:global_step/sec: 12.7474
I1203 23:50:09.235347 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 12.7474
INFO:tensorflow:global_step/sec: 40.7081
I1203 23:50:11.691853 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 40.7081
INFO:tensorflow:global_step/sec: 40.3037
I1203 23:50:14.172989 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 40.3037
I1203 23:50:19.475179 140321653876608 training.py:632] loss: 0.0023804, abs_error: u=1.0508/u_t=0.0683/u_x=3.1128, rel_error: u=1.0253/u_t=0.1069/u_x=2.0635, below_baseline: u=0.4370/u_t=0.9232/u_x=0.2618
INFO:tensorflow:global_step/sec: 12.9701
I1203 23:50:21.882995 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 12.9701
INFO:tensorflow:global_step/sec: 41.0078
I1203 23:50:24.321558 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 41.0078
I1203 23:50:31.167683 140321653876608 training.py:632] loss: 0.0022151, abs_error: u=1.0471/u_t=0.0648/u_x=3.1152, rel_error: u=1.0227/u_t=0.1021/u_x=2.0721, below_baseline: u=0.4412/u_t=0.9263/u_x=0.2611
INFO:tensorflow:global_step/sec: 12.3595
I1203 23:50:32.412480 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 12.3595
INFO:tensorflow:global_step/sec: 41.7204
I1203 23:50:34.809411 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 41.7204
INFO:tensorflow:global_step/sec: 41.5003
I1203 23:50:37.219006 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 41.5003
I1203 23:50:42.982274 140321653876608 training.py:632] loss: 0.0022014, abs_error: u=1.0469/u_t=0.0647/u_x=3.1175, rel_error: u=1.0220/u_t=0.1019/u_x=2.0824, below_baseline: u=0.4416/u_t=0.9264/u_x=0.2593
INFO:tensorflow:global_step/sec: 12.1678
I1203 23:50:45.437423 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 12.1678
INFO:tensorflow:global_step/sec: 41.2224
I1203 23:50:47.863325 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 41.2224
I1203 23:50:54.666382 140321653876608 training.py:632] loss: 0.0021883, abs_error: u=1.0450/u_t=0.0644/u_x=3.1188, rel_error: u=1.0201/u_t=0.1009/u_x=2.0888, below_baseline: u=0.4448/u_t=0.9268/u_x=0.2582
INFO:tensorflow:global_step/sec: 12.434
I1203 23:50:55.905744 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 12.434
INFO:tensorflow:Saving checkpoints for 5826 into burgers-checkpoints/model.ckpt.
I1203 23:50:56.559426 140321653876608 basic_session_run_hooks.py:606] Saving checkpoints for 5826 into burgers-checkpoints/model.ckpt.
INFO:tensorflow:global_step/sec: 32.8844
I1203 23:50:58.946691 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 32.8844
INFO:tensorflow:global_step/sec: 40.7423
I1203 23:51:01.401153 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 40.7423
I1203 23:51:06.996342 140321653876608 training.py:632] loss: 0.0021645, abs_error: u=1.0467/u_t=0.0638/u_x=3.1206, rel_error: u=1.0222/u_t=0.1005/u_x=2.0933, below_baseline: u=0.4431/u_t=0.9273/u_x=0.2579
INFO:tensorflow:global_step/sec: 12.3318
I1203 23:51:09.510290 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 12.3318
INFO:tensorflow:global_step/sec: 39.9402
I1203 23:51:12.014024 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 39.9402
I1203 23:51:18.566941 140321653876608 training.py:632] loss: 0.0021421, abs_error: u=1.0462/u_t=0.0634/u_x=3.1200, rel_error: u=1.0214/u_t=0.0997/u_x=2.0973, below_baseline: u=0.4426/u_t=0.9278/u_x=0.2577
INFO:tensorflow:global_step/sec: 12.7582
I1203 23:51:19.852111 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 12.7582
INFO:tensorflow:global_step/sec: 40.5071
I1203 23:51:22.320835 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 40.5071
INFO:tensorflow:global_step/sec: 38.7535
I1203 23:51:24.901241 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 38.7535
I1203 23:51:30.439450 140321653876608 training.py:632] loss: 0.0021252, abs_error: u=1.0451/u_t=0.0631/u_x=3.1191, rel_error: u=1.0205/u_t=0.0989/u_x=2.0964, below_baseline: u=0.4453/u_t=0.9283/u_x=0.2575
INFO:tensorflow:global_step/sec: 12.5172
I1203 23:51:32.890242 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 12.5172
INFO:tensorflow:global_step/sec: 40.4902
I1203 23:51:35.359952 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 40.4902
I1203 23:51:42.017524 140321653876608 training.py:632] loss: 0.0021109, abs_error: u=1.0463/u_t=0.0628/u_x=3.1202, rel_error: u=1.0211/u_t=0.0986/u_x=2.1003, below_baseline: u=0.4442/u_t=0.9287/u_x=0.2570
INFO:tensorflow:global_step/sec: 12.5655
I1203 23:51:43.318238 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 12.5655
INFO:tensorflow:global_step/sec: 39.7556
I1203 23:51:45.833616 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 39.7556
INFO:tensorflow:global_step/sec: 40.9732
I1203 23:51:48.274221 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 40.9732
I1203 23:51:53.623631 140321653876608 training.py:632] loss: 0.0020917, abs_error: u=1.0460/u_t=0.0625/u_x=3.1201, rel_error: u=1.0206/u_t=0.0982/u_x=2.1051, below_baseline: u=0.4443/u_t=0.9288/u_x=0.2569
INFO:tensorflow:global_step/sec: 12.8922
I1203 23:51:56.030843 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 12.8922
INFO:tensorflow:global_step/sec: 39.4819
I1203 23:51:58.563661 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 39.4819
I1203 23:52:05.532997 140321653876608 training.py:632] loss: 0.0020790, abs_error: u=1.0458/u_t=0.0623/u_x=3.1200, rel_error: u=1.0203/u_t=0.0977/u_x=2.1062, below_baseline: u=0.4447/u_t=0.9290/u_x=0.2569
INFO:tensorflow:global_step/sec: 12.1827
I1203 23:52:06.772014 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 12.1827
INFO:tensorflow:global_step/sec: 40.8332
I1203 23:52:09.221062 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 40.8332
INFO:tensorflow:global_step/sec: 39.6348
I1203 23:52:11.744074 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 39.6348
I1203 23:52:16.913486 140321653876608 training.py:632] loss: 0.0020685, abs_error: u=1.0462/u_t=0.0623/u_x=3.1187, rel_error: u=1.0205/u_t=0.0975/u_x=2.1077, below_baseline: u=0.4435/u_t=0.9290/u_x=0.2565
INFO:tensorflow:global_step/sec: 12.8949
I1203 23:52:19.499075 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 12.8949
INFO:tensorflow:global_step/sec: 39.7108
I1203 23:52:22.017379 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 39.7108
I1203 23:52:28.961833 140321653876608 training.py:632] loss: 0.0020518, abs_error: u=1.0453/u_t=0.0618/u_x=3.1187, rel_error: u=1.0191/u_t=0.0965/u_x=2.1076, below_baseline: u=0.4460/u_t=0.9299/u_x=0.2567
INFO:tensorflow:global_step/sec: 12.1808
I1203 23:52:30.226891 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 12.1808
INFO:tensorflow:global_step/sec: 40.6597
I1203 23:52:32.686392 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 40.6597
INFO:tensorflow:global_step/sec: 40.9219
I1203 23:52:35.130020 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 40.9219
I1203 23:52:41.118919 140321653876608 training.py:632] loss: 0.0020332, abs_error: u=1.0441/u_t=0.0613/u_x=3.1185, rel_error: u=1.0180/u_t=0.0958/u_x=2.1079, below_baseline: u=0.4471/u_t=0.9303/u_x=0.2566
INFO:tensorflow:global_step/sec: 11.7492
I1203 23:52:43.641276 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 11.7492
INFO:tensorflow:global_step/sec: 39.1095
I1203 23:52:46.198184 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 39.1095
I1203 23:52:52.969369 140321653876608 training.py:632] loss: 0.0020324, abs_error: u=1.0460/u_t=0.0616/u_x=3.1160, rel_error: u=1.0194/u_t=0.0960/u_x=2.1070, below_baseline: u=0.4449/u_t=0.9302/u_x=0.2565
INFO:tensorflow:global_step/sec: 12.4025
I1203 23:52:54.261023 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 12.4025
INFO:tensorflow:global_step/sec: 40.0142
I1203 23:52:56.760140 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 40.0142
INFO:tensorflow:global_step/sec: 39.9942
I1203 23:52:59.260493 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 39.9942
I1203 23:53:04.707718 140321653876608 training.py:632] loss: 0.0020238, abs_error: u=1.0457/u_t=0.0615/u_x=3.1169, rel_error: u=1.0191/u_t=0.0957/u_x=2.1058, below_baseline: u=0.4460/u_t=0.9303/u_x=0.2565
INFO:tensorflow:global_step/sec: 12.5493
I1203 23:53:07.229048 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 12.5493
INFO:tensorflow:global_step/sec: 40.3533
I1203 23:53:09.707149 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 40.3533
I1203 23:53:17.064538 140321653876608 training.py:632] loss: 0.0019954, abs_error: u=1.0441/u_t=0.0608/u_x=3.1151, rel_error: u=1.0174/u_t=0.0947/u_x=2.1074, below_baseline: u=0.4477/u_t=0.9307/u_x=0.2563
INFO:tensorflow:global_step/sec: 11.595
I1203 23:53:18.331580 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 11.595
INFO:tensorflow:global_step/sec: 40.98
I1203 23:53:20.771798 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 40.98
INFO:tensorflow:global_step/sec: 39.7763
I1203 23:53:23.285880 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 39.7763
I1203 23:53:29.059211 140321653876608 training.py:632] loss: 0.0019856, abs_error: u=1.0432/u_t=0.0606/u_x=3.1145, rel_error: u=1.0165/u_t=0.0942/u_x=2.1067, below_baseline: u=0.4478/u_t=0.9312/u_x=0.2563
INFO:tensorflow:global_step/sec: 12.0856
I1203 23:53:31.560185 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 12.0856
INFO:tensorflow:global_step/sec: 39.5987
I1203 23:53:34.085491 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 39.5987
I1203 23:53:40.665071 140321653876608 training.py:632] loss: 0.0019767, abs_error: u=1.0417/u_t=0.0603/u_x=3.1152, rel_error: u=1.0153/u_t=0.0939/u_x=2.1074, below_baseline: u=0.4508/u_t=0.9313/u_x=0.2562
INFO:tensorflow:global_step/sec: 12.8353
I1203 23:53:41.876546 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 12.8353
INFO:tensorflow:global_step/sec: 41.663
I1203 23:53:44.276756 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 41.663
INFO:tensorflow:global_step/sec: 40.2642
I1203 23:53:46.760390 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 40.2642
I1203 23:53:53.033445 140321653876608 training.py:632] loss: 0.0019592, abs_error: u=1.0438/u_t=0.0601/u_x=3.1137, rel_error: u=1.0168/u_t=0.0933/u_x=2.1097, below_baseline: u=0.4472/u_t=0.9318/u_x=0.2565
INFO:tensorflow:global_step/sec: 11.3897
I1203 23:53:55.540223 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 11.3897
INFO:tensorflow:global_step/sec: 39.9387
I1203 23:53:58.044047 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 39.9387
I1203 23:54:04.862977 140321653876608 training.py:632] loss: 0.0019483, abs_error: u=1.0425/u_t=0.0599/u_x=3.1124, rel_error: u=1.0162/u_t=0.0930/u_x=2.1117, below_baseline: u=0.4492/u_t=0.9317/u_x=0.2565
INFO:tensorflow:global_step/sec: 12.3329
I1203 23:54:06.152443 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 12.3329
INFO:tensorflow:global_step/sec: 39.5085
I1203 23:54:08.683539 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 39.5085
INFO:tensorflow:global_step/sec: 39.4899
I1203 23:54:11.215919 140321653876608 basic_session_run_hooks.py:692] global_step/sec: 39.4899
I1203 23:54:16.454655 140321653876608 training.py:632] loss: 0.0019375, abs_error: u=1.0430/u_t=0.0597/u_x=3.1131, rel_error: u=1.0157/u_t=0.0925/u_x=2.1128, below_baseline: u=0.4488/u_t=0.9321/u_x=0.2565
INFO:tensorflow:Saving checkpoints for 10000 into burgers-checkpoints/model.ckpt.
I1203 23:54:16.461011 140321653876608 basic_session_run_hooks.py:606] Saving checkpoints for 10000 into burgers-checkpoints/model.ckpt.
I1203 23:54:17.576740 140321653876608 run_training.py:80] Saving CSV with metrics
I1203 23:54:17.586394 140321653876608 run_training.py:85] Finished
CPU times: user 12min 58s, sys: 51.5 s, total: 13min 49s
Wall time: 9min 12s
In [0]:
# Use pre-computed "exact" solution from WENO.
# You could also run this yourself using scripts/create_exact_data.py
! gsutil cp gs://data-driven-discretization-public/time-evolution/exact/burgers_weno.nc .
Copying gs://data-driven-discretization-public/time-evolution/exact/burgers_weno.nc...
\ [1 files][391.0 MiB/391.0 MiB]
Operation completed over 1 objects/391.0 MiB.
See also ks_spectral.nc
and kdv_spectral.nc
in the same directory for reference simulations with KS and KdV equations.
In [0]:
import xarray
# remove extra samples, so evaluation runs faster
reference = xarray.open_dataset('burgers_weno.nc').isel(sample=slice(10)).load()
reference.to_netcdf('burgers_weno_10samples.nc')
In [41]:
%%time
! python data-driven-discretization-1d/pde_superresolution/scripts/run_evaluation.py \
--checkpoint_dir burgers-checkpoints \
--exact_solution_path burgers_weno_10samples.nc \
--equation_name burgers \
--stop_times "[10]" \
--num_samples 10 \
--warmup 10 \
--time_delta 0.1 \
--time_max 50 \
--logtostderr
WARNING:tensorflow:
The TensorFlow contrib module will not be included in TensorFlow 2.0.
For more information, please see:
* https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md
* https://github.com/tensorflow/addons
* https://github.com/tensorflow/io (for I/O related ops)
If you depend on functionality not listed there, please file an issue.
WARNING:tensorflow:From /content/data-driven-discretization-1d/pde_superresolution/model.py:422: The name tf.AUTO_REUSE is deprecated. Please use tf.compat.v1.AUTO_REUSE instead.
WARNING:tensorflow:From /content/data-driven-discretization-1d/pde_superresolution/training.py:305: The name tf.Session is deprecated. Please use tf.compat.v1.Session instead.
WARNING:tensorflow:From /content/data-driven-discretization-1d/pde_superresolution/training.py:510: The name tf.train.SessionRunHook is deprecated. Please use tf.estimator.SessionRunHook instead.
WARNING:tensorflow:From /content/data-driven-discretization-1d/pde_superresolution/training.py:528: The name tf.summary.FileWriter is deprecated. Please use tf.compat.v1.summary.FileWriter instead.
/usr/local/lib/python3.6/dist-packages/absl/flags/_validators.py:359: UserWarning: Flag --checkpoint_dir has a non-None default value; therefore, mark_flag_as_required will pass even if flag is not specified in the command line!
'command line!' % flag_name)
WARNING:tensorflow:From /content/data-driven-discretization-1d/pde_superresolution/training.py:643: The name tf.gfile.GFile is deprecated. Please use tf.io.gfile.GFile instead.
W1204 01:33:49.140243 140491107764096 module_wrapper.py:139] From /content/data-driven-discretization-1d/pde_superresolution/training.py:643: The name tf.gfile.GFile is deprecated. Please use tf.io.gfile.GFile instead.
I1204 01:33:51.045311 140491107764096 fn_api_runner_transforms.py:488] ==================== <function annotate_downstream_side_inputs at 0x7fc63207ef28> ====================
I1204 01:33:51.047699 140491107764096 fn_api_runner_transforms.py:488] ==================== <function fix_side_input_pcoll_coders at 0x7fc63207d0d0> ====================
I1204 01:33:51.048913 140491107764096 fn_api_runner_transforms.py:488] ==================== <function lift_combiners at 0x7fc63207d158> ====================
I1204 01:33:51.049641 140491107764096 fn_api_runner_transforms.py:488] ==================== <function expand_sdf at 0x7fc63207d1e0> ====================
I1204 01:33:51.050010 140491107764096 fn_api_runner_transforms.py:488] ==================== <function expand_gbk at 0x7fc63207d268> ====================
I1204 01:33:51.050777 140491107764096 fn_api_runner_transforms.py:488] ==================== <function sink_flattens at 0x7fc63207d378> ====================
I1204 01:33:51.051086 140491107764096 fn_api_runner_transforms.py:488] ==================== <function greedily_fuse at 0x7fc63207d400> ====================
I1204 01:33:51.054368 140491107764096 fn_api_runner_transforms.py:488] ==================== <function read_to_impulse at 0x7fc63207d488> ====================
I1204 01:33:51.054948 140491107764096 fn_api_runner_transforms.py:488] ==================== <function impulse_to_input at 0x7fc63207d510> ====================
I1204 01:33:51.055781 140491107764096 fn_api_runner_transforms.py:488] ==================== <function inject_timer_pcollections at 0x7fc63207d6a8> ====================
I1204 01:33:51.056416 140491107764096 fn_api_runner_transforms.py:488] ==================== <function sort_stages at 0x7fc63207d730> ====================
I1204 01:33:51.056606 140491107764096 fn_api_runner_transforms.py:488] ==================== <function window_pcollection_coders at 0x7fc63207d7b8> ====================
I1204 01:33:51.074817 140491107764096 fn_api_runner.py:659] Running ((((ref_AppliedPTransform_create|load|reshuffle|integrate|combine|finalize/create/Read_4)+(ref_AppliedPTransform_create|load|reshuffle|integrate|combine|finalize/load_5))+(ref_AppliedPTransform_create|load|reshuffle|integrate|combine|finalize/reshuffle/AddRandomKeys_7))+(ref_AppliedPTransform_create|load|reshuffle|integrate|combine|finalize/reshuffle/ReshufflePerKey/Map(reify_timestamps)_9))+(create|load|reshuffle|integrate|combine|finalize/reshuffle/ReshufflePerKey/GroupByKey/Write)
I1204 01:33:51.614212 140491107764096 fn_api_runner.py:659] Running ((((((create|load|reshuffle|integrate|combine|finalize/reshuffle/ReshufflePerKey/GroupByKey/Read)+(ref_AppliedPTransform_create|load|reshuffle|integrate|combine|finalize/reshuffle/ReshufflePerKey/FlatMap(restore_timestamps)_14))+(ref_AppliedPTransform_create|load|reshuffle|integrate|combine|finalize/reshuffle/RemoveRandomKeys_15))+(ref_AppliedPTransform_create|load|reshuffle|integrate|combine|finalize/integrate_16))+(ref_AppliedPTransform_create|load|reshuffle|integrate|combine|finalize/combine/KeyWithVoid_18))+(create|load|reshuffle|integrate|combine|finalize/combine/CombinePerKey/Precombine))+(create|load|reshuffle|integrate|combine|finalize/combine/CombinePerKey/Group/Write)
WARNING:tensorflow:From /content/data-driven-discretization-1d/pde_superresolution/integrate.py:57: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead.
W1204 01:33:51.735756 140489203267328 module_wrapper.py:139] From /content/data-driven-discretization-1d/pde_superresolution/integrate.py:57: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead.
WARNING:tensorflow:From /content/data-driven-discretization-1d/pde_superresolution/model.py:442: The name tf.variable_scope is deprecated. Please use tf.compat.v1.variable_scope instead.
W1204 01:33:51.743596 140489203267328 module_wrapper.py:139] From /content/data-driven-discretization-1d/pde_superresolution/model.py:442: The name tf.variable_scope is deprecated. Please use tf.compat.v1.variable_scope instead.
WARNING:tensorflow:From /content/data-driven-discretization-1d/pde_superresolution/layers.py:135: conv1d (from tensorflow.python.layers.convolutional) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.keras.layers.Conv1D` instead.
W1204 01:33:51.758577 140489203267328 deprecation.py:323] From /content/data-driven-discretization-1d/pde_superresolution/layers.py:135: conv1d (from tensorflow.python.layers.convolutional) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.keras.layers.Conv1D` instead.
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow_core/python/layers/convolutional.py:218: Layer.apply (from tensorflow.python.keras.engine.base_layer) is deprecated and will be removed in a future version.
Instructions for updating:
Please use `layer.__call__` method instead.
W1204 01:33:51.761722 140489203267328 deprecation.py:323] From /usr/local/lib/python3.6/dist-packages/tensorflow_core/python/layers/convolutional.py:218: Layer.apply (from tensorflow.python.keras.engine.base_layer) is deprecated and will be removed in a future version.
Instructions for updating:
Please use `layer.__call__` method instead.
WARNING:tensorflow:From /content/data-driven-discretization-1d/pde_superresolution/model.py:532: calling extract_image_patches (from tensorflow.python.ops.array_ops) with ksizes is deprecated and will be removed in a future version.
Instructions for updating:
ksizes is deprecated, use sizes instead
W1204 01:33:52.457936 140489203267328 deprecation.py:506] From /content/data-driven-discretization-1d/pde_superresolution/model.py:532: calling extract_image_patches (from tensorflow.python.ops.array_ops) with ksizes is deprecated and will be removed in a future version.
Instructions for updating:
ksizes is deprecated, use sizes instead
WARNING:tensorflow:From /content/data-driven-discretization-1d/pde_superresolution/integrate.py:66: The name tf.train.Saver is deprecated. Please use tf.compat.v1.train.Saver instead.
W1204 01:33:52.607657 140489203267328 module_wrapper.py:139] From /content/data-driven-discretization-1d/pde_superresolution/integrate.py:66: The name tf.train.Saver is deprecated. Please use tf.compat.v1.train.Saver instead.
2019-12-04 01:33:52.663858: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcuda.so.1
2019-12-04 01:33:52.672359: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-12-04 01:33:52.677572: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1618] Found device 0 with properties:
name: Tesla P4 major: 6 minor: 1 memoryClockRate(GHz): 1.1135
pciBusID: 0000:00:04.0
2019-12-04 01:33:52.680492: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1
2019-12-04 01:33:52.684708: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcublas.so.10
2019-12-04 01:33:52.706098: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcufft.so.10
2019-12-04 01:33:52.709149: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcurand.so.10
2019-12-04 01:33:52.712530: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusolver.so.10
2019-12-04 01:33:52.713885: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusparse.so.10
2019-12-04 01:33:52.725276: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7
2019-12-04 01:33:52.725703: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-12-04 01:33:52.727838: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-12-04 01:33:52.728417: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1746] Adding visible gpu devices: 0
2019-12-04 01:33:52.767623: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 2300000000 Hz
2019-12-04 01:33:52.774121: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x7def880 initialized for platform Host (this does not guarantee that XLA will be used). Devices:
2019-12-04 01:33:52.774161: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): Host, Default Version
2019-12-04 01:33:53.139592: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-12-04 01:33:53.142841: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x7defa40 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:
2019-12-04 01:33:53.142905: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): Tesla P4, Compute Capability 6.1
2019-12-04 01:33:53.143383: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-12-04 01:33:53.143943: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1618] Found device 0 with properties:
name: Tesla P4 major: 6 minor: 1 memoryClockRate(GHz): 1.1135
pciBusID: 0000:00:04.0
2019-12-04 01:33:53.144116: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1
2019-12-04 01:33:53.144224: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcublas.so.10
2019-12-04 01:33:53.144272: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcufft.so.10
2019-12-04 01:33:53.144317: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcurand.so.10
2019-12-04 01:33:53.144352: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusolver.so.10
2019-12-04 01:33:53.144381: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusparse.so.10
2019-12-04 01:33:53.144410: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7
2019-12-04 01:33:53.144553: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-12-04 01:33:53.145218: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-12-04 01:33:53.145750: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1746] Adding visible gpu devices: 0
2019-12-04 01:33:53.145920: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1
2019-12-04 01:33:53.147414: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1159] Device interconnect StreamExecutor with strength 1 edge matrix:
2019-12-04 01:33:53.147455: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1165] 0
2019-12-04 01:33:53.147475: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1178] 0: N
2019-12-04 01:33:53.147670: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-12-04 01:33:53.148323: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-12-04 01:33:53.148824: W tensorflow/core/common_runtime/gpu/gpu_bfc_allocator.cc:39] Overriding allow_growth setting because the TF_FORCE_GPU_ALLOW_GROWTH environment variable is set. Original config value was 0.
2019-12-04 01:33:53.148895: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1304] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 5685 MB memory) -> physical GPU (device: 0, name: Tesla P4, pci bus id: 0000:00:04.0, compute capability: 6.1)
INFO:tensorflow:Restoring parameters from burgers-checkpoints/model.ckpt
I1204 01:33:53.170781 140489203267328 saver.py:1284] Restoring parameters from burgers-checkpoints/model.ckpt
I1204 01:33:53.263800 140489203267328 integrate.py:148] solve_ivp from 10.0 to 60.0
2019-12-04 01:33:53.382825: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcublas.so.10
2019-12-04 01:33:56.385405: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7
I1204 01:34:58.492434 140489203267328 integrate.py:158] nfev: 15005, njev: 0, nlu: 0
I1204 01:34:58.493237 140489203267328 integrate.py:159] status: 0, message: The solver successfully reached the end of the integration interval.
I1204 01:34:58.493431 140489203267328 integrate.py:162] output has length 501
2019-12-04 01:34:59.113210: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-12-04 01:34:59.116134: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1618] Found device 0 with properties:
name: Tesla P4 major: 6 minor: 1 memoryClockRate(GHz): 1.1135
pciBusID: 0000:00:04.0
2019-12-04 01:34:59.116365: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1
2019-12-04 01:34:59.116419: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcublas.so.10
2019-12-04 01:34:59.116457: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcufft.so.10
2019-12-04 01:34:59.116487: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcurand.so.10
2019-12-04 01:34:59.116516: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusolver.so.10
2019-12-04 01:34:59.116547: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusparse.so.10
2019-12-04 01:34:59.116577: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7
2019-12-04 01:34:59.116824: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-12-04 01:34:59.119586: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-12-04 01:34:59.120216: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1746] Adding visible gpu devices: 0
2019-12-04 01:34:59.120294: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1159] Device interconnect StreamExecutor with strength 1 edge matrix:
2019-12-04 01:34:59.120379: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1165] 0
2019-12-04 01:34:59.120400: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1178] 0: N
2019-12-04 01:34:59.120586: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-12-04 01:34:59.123324: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-12-04 01:34:59.123854: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1304] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 5685 MB memory) -> physical GPU (device: 0, name: Tesla P4, pci bus id: 0000:00:04.0, compute capability: 6.1)
INFO:tensorflow:Restoring parameters from burgers-checkpoints/model.ckpt
I1204 01:34:59.132694 140489203267328 saver.py:1284] Restoring parameters from burgers-checkpoints/model.ckpt
I1204 01:34:59.171818 140489203267328 integrate.py:148] solve_ivp from 10.0 to 60.0
I1204 01:35:56.247308 140489203267328 integrate.py:158] nfev: 15005, njev: 0, nlu: 0
I1204 01:35:56.247720 140489203267328 integrate.py:159] status: 0, message: The solver successfully reached the end of the integration interval.
I1204 01:35:56.247889 140489203267328 integrate.py:162] output has length 501
2019-12-04 01:35:56.723998: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-12-04 01:35:56.725909: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1618] Found device 0 with properties:
name: Tesla P4 major: 6 minor: 1 memoryClockRate(GHz): 1.1135
pciBusID: 0000:00:04.0
2019-12-04 01:35:56.726117: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1
2019-12-04 01:35:56.726165: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcublas.so.10
2019-12-04 01:35:56.726227: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcufft.so.10
2019-12-04 01:35:56.726263: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcurand.so.10
2019-12-04 01:35:56.726299: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusolver.so.10
2019-12-04 01:35:56.726348: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusparse.so.10
2019-12-04 01:35:56.737111: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7
2019-12-04 01:35:56.738136: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-12-04 01:35:56.738924: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-12-04 01:35:56.740298: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1746] Adding visible gpu devices: 0
2019-12-04 01:35:56.740376: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1159] Device interconnect StreamExecutor with strength 1 edge matrix:
2019-12-04 01:35:56.740399: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1165] 0
2019-12-04 01:35:56.740417: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1178] 0: N
2019-12-04 01:35:56.740586: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-12-04 01:35:56.744295: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-12-04 01:35:56.747527: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1304] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 5685 MB memory) -> physical GPU (device: 0, name: Tesla P4, pci bus id: 0000:00:04.0, compute capability: 6.1)
INFO:tensorflow:Restoring parameters from burgers-checkpoints/model.ckpt
I1204 01:35:56.751365 140489203267328 saver.py:1284] Restoring parameters from burgers-checkpoints/model.ckpt
I1204 01:35:56.809119 140489203267328 integrate.py:148] solve_ivp from 10.0 to 60.0
I1204 01:36:53.342211 140489203267328 integrate.py:158] nfev: 15005, njev: 0, nlu: 0
I1204 01:36:53.342549 140489203267328 integrate.py:159] status: 0, message: The solver successfully reached the end of the integration interval.
I1204 01:36:53.342669 140489203267328 integrate.py:162] output has length 501
2019-12-04 01:36:54.005253: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-12-04 01:36:54.005836: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1618] Found device 0 with properties:
name: Tesla P4 major: 6 minor: 1 memoryClockRate(GHz): 1.1135
pciBusID: 0000:00:04.0
2019-12-04 01:36:54.006174: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1
2019-12-04 01:36:54.006265: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcublas.so.10
2019-12-04 01:36:54.006304: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcufft.so.10
2019-12-04 01:36:54.006349: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcurand.so.10
2019-12-04 01:36:54.006382: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusolver.so.10
2019-12-04 01:36:54.006417: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusparse.so.10
2019-12-04 01:36:54.006454: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7
2019-12-04 01:36:54.006637: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-12-04 01:36:54.007267: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-12-04 01:36:54.008258: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1746] Adding visible gpu devices: 0
2019-12-04 01:36:54.008329: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1159] Device interconnect StreamExecutor with strength 1 edge matrix:
2019-12-04 01:36:54.008362: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1165] 0
2019-12-04 01:36:54.008379: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1178] 0: N
2019-12-04 01:36:54.008576: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-12-04 01:36:54.009252: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-12-04 01:36:54.009900: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1304] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 5685 MB memory) -> physical GPU (device: 0, name: Tesla P4, pci bus id: 0000:00:04.0, compute capability: 6.1)
INFO:tensorflow:Restoring parameters from burgers-checkpoints/model.ckpt
I1204 01:36:54.012012 140489203267328 saver.py:1284] Restoring parameters from burgers-checkpoints/model.ckpt
I1204 01:36:54.053324 140489203267328 integrate.py:148] solve_ivp from 10.0 to 60.0
I1204 01:37:51.169499 140489203267328 integrate.py:158] nfev: 15005, njev: 0, nlu: 0
I1204 01:37:51.169794 140489203267328 integrate.py:159] status: 0, message: The solver successfully reached the end of the integration interval.
I1204 01:37:51.169914 140489203267328 integrate.py:162] output has length 501
2019-12-04 01:37:51.809240: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-12-04 01:37:51.812579: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1618] Found device 0 with properties:
name: Tesla P4 major: 6 minor: 1 memoryClockRate(GHz): 1.1135
pciBusID: 0000:00:04.0
2019-12-04 01:37:51.812764: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1
2019-12-04 01:37:51.812792: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcublas.so.10
2019-12-04 01:37:51.812814: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcufft.so.10
2019-12-04 01:37:51.812836: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcurand.so.10
2019-12-04 01:37:51.812858: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusolver.so.10
2019-12-04 01:37:51.812880: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusparse.so.10
2019-12-04 01:37:51.812901: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7
2019-12-04 01:37:51.813066: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-12-04 01:37:51.817977: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-12-04 01:37:51.818465: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1746] Adding visible gpu devices: 0
2019-12-04 01:37:51.820772: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1159] Device interconnect StreamExecutor with strength 1 edge matrix:
2019-12-04 01:37:51.820802: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1165] 0
2019-12-04 01:37:51.820816: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1178] 0: N
2019-12-04 01:37:51.820989: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-12-04 01:37:51.821614: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-12-04 01:37:51.825216: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1304] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 5685 MB memory) -> physical GPU (device: 0, name: Tesla P4, pci bus id: 0000:00:04.0, compute capability: 6.1)
INFO:tensorflow:Restoring parameters from burgers-checkpoints/model.ckpt
I1204 01:37:51.839624 140489203267328 saver.py:1284] Restoring parameters from burgers-checkpoints/model.ckpt
I1204 01:37:51.948261 140489203267328 integrate.py:148] solve_ivp from 10.0 to 60.0
I1204 01:38:49.550000 140489203267328 integrate.py:158] nfev: 15005, njev: 0, nlu: 0
I1204 01:38:49.550348 140489203267328 integrate.py:159] status: 0, message: The solver successfully reached the end of the integration interval.
I1204 01:38:49.550482 140489203267328 integrate.py:162] output has length 501
2019-12-04 01:38:50.343724: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-12-04 01:38:50.344378: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1618] Found device 0 with properties:
name: Tesla P4 major: 6 minor: 1 memoryClockRate(GHz): 1.1135
pciBusID: 0000:00:04.0
2019-12-04 01:38:50.344619: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1
2019-12-04 01:38:50.344669: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcublas.so.10
2019-12-04 01:38:50.346448: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcufft.so.10
2019-12-04 01:38:50.346602: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcurand.so.10
2019-12-04 01:38:50.346643: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusolver.so.10
2019-12-04 01:38:50.346669: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusparse.so.10
2019-12-04 01:38:50.346699: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7
2019-12-04 01:38:50.347819: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-12-04 01:38:50.348786: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-12-04 01:38:50.349298: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1746] Adding visible gpu devices: 0
2019-12-04 01:38:50.349362: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1159] Device interconnect StreamExecutor with strength 1 edge matrix:
2019-12-04 01:38:50.349383: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1165] 0
2019-12-04 01:38:50.349398: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1178] 0: N
2019-12-04 01:38:50.349562: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-12-04 01:38:50.351361: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-12-04 01:38:50.351858: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1304] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 5685 MB memory) -> physical GPU (device: 0, name: Tesla P4, pci bus id: 0000:00:04.0, compute capability: 6.1)
INFO:tensorflow:Restoring parameters from burgers-checkpoints/model.ckpt
I1204 01:38:50.358273 140489203267328 saver.py:1284] Restoring parameters from burgers-checkpoints/model.ckpt
I1204 01:38:50.405956 140489203267328 integrate.py:148] solve_ivp from 10.0 to 60.0
I1204 01:39:34.548611 140489203267328 integrate.py:158] nfev: 15005, njev: 0, nlu: 0
I1204 01:39:34.548906 140489203267328 integrate.py:159] status: 0, message: The solver successfully reached the end of the integration interval.
I1204 01:39:34.549031 140489203267328 integrate.py:162] output has length 501
2019-12-04 01:39:34.772945: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-12-04 01:39:34.775615: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1618] Found device 0 with properties:
name: Tesla P4 major: 6 minor: 1 memoryClockRate(GHz): 1.1135
pciBusID: 0000:00:04.0
2019-12-04 01:39:34.775943: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1
2019-12-04 01:39:34.776051: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcublas.so.10
2019-12-04 01:39:34.777057: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcufft.so.10
2019-12-04 01:39:34.777107: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcurand.so.10
2019-12-04 01:39:34.777142: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusolver.so.10
2019-12-04 01:39:34.777177: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusparse.so.10
2019-12-04 01:39:34.777241: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7
2019-12-04 01:39:34.777467: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-12-04 01:39:34.779166: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-12-04 01:39:34.780479: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1746] Adding visible gpu devices: 0
2019-12-04 01:39:34.780544: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1159] Device interconnect StreamExecutor with strength 1 edge matrix:
2019-12-04 01:39:34.780563: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1165] 0
2019-12-04 01:39:34.780576: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1178] 0: N
2019-12-04 01:39:34.780747: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-12-04 01:39:34.782417: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-12-04 01:39:34.783817: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1304] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 5685 MB memory) -> physical GPU (device: 0, name: Tesla P4, pci bus id: 0000:00:04.0, compute capability: 6.1)
INFO:tensorflow:Restoring parameters from burgers-checkpoints/model.ckpt
I1204 01:39:34.797372 140489203267328 saver.py:1284] Restoring parameters from burgers-checkpoints/model.ckpt
I1204 01:39:34.829233 140489203267328 integrate.py:148] solve_ivp from 10.0 to 60.0
I1204 01:40:10.634037 140489203267328 integrate.py:158] nfev: 15005, njev: 0, nlu: 0
I1204 01:40:10.634355 140489203267328 integrate.py:159] status: 0, message: The solver successfully reached the end of the integration interval.
I1204 01:40:10.634470 140489203267328 integrate.py:162] output has length 501
2019-12-04 01:40:10.905223: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-12-04 01:40:10.905921: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1618] Found device 0 with properties:
name: Tesla P4 major: 6 minor: 1 memoryClockRate(GHz): 1.1135
pciBusID: 0000:00:04.0
2019-12-04 01:40:10.906150: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1
2019-12-04 01:40:10.906242: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcublas.so.10
2019-12-04 01:40:10.906281: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcufft.so.10
2019-12-04 01:40:10.906313: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcurand.so.10
2019-12-04 01:40:10.906379: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusolver.so.10
2019-12-04 01:40:10.906414: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusparse.so.10
2019-12-04 01:40:10.906463: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7
2019-12-04 01:40:10.906671: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-12-04 01:40:10.907384: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-12-04 01:40:10.907910: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1746] Adding visible gpu devices: 0
2019-12-04 01:40:10.907975: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1159] Device interconnect StreamExecutor with strength 1 edge matrix:
2019-12-04 01:40:10.908011: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1165] 0
2019-12-04 01:40:10.908029: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1178] 0: N
2019-12-04 01:40:10.908262: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-12-04 01:40:10.908917: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-12-04 01:40:10.909507: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1304] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 5685 MB memory) -> physical GPU (device: 0, name: Tesla P4, pci bus id: 0000:00:04.0, compute capability: 6.1)
INFO:tensorflow:Restoring parameters from burgers-checkpoints/model.ckpt
I1204 01:40:10.911503 140489203267328 saver.py:1284] Restoring parameters from burgers-checkpoints/model.ckpt
I1204 01:40:10.962839 140489203267328 integrate.py:148] solve_ivp from 10.0 to 60.0
I1204 01:40:40.387801 140489203267328 integrate.py:158] nfev: 15005, njev: 0, nlu: 0
I1204 01:40:40.388015 140489203267328 integrate.py:159] status: 0, message: The solver successfully reached the end of the integration interval.
I1204 01:40:40.388078 140489203267328 integrate.py:162] output has length 501
2019-12-04 01:40:40.527568: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-12-04 01:40:40.528066: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1618] Found device 0 with properties:
name: Tesla P4 major: 6 minor: 1 memoryClockRate(GHz): 1.1135
pciBusID: 0000:00:04.0
2019-12-04 01:40:40.528229: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1
2019-12-04 01:40:40.528279: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcublas.so.10
2019-12-04 01:40:40.528300: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcufft.so.10
2019-12-04 01:40:40.528320: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcurand.so.10
2019-12-04 01:40:40.528339: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusolver.so.10
2019-12-04 01:40:40.528358: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusparse.so.10
2019-12-04 01:40:40.528377: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7
2019-12-04 01:40:40.528540: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-12-04 01:40:40.529048: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-12-04 01:40:40.529378: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1746] Adding visible gpu devices: 0
2019-12-04 01:40:40.529432: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1159] Device interconnect StreamExecutor with strength 1 edge matrix:
2019-12-04 01:40:40.529447: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1165] 0
2019-12-04 01:40:40.529460: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1178] 0: N
2019-12-04 01:40:40.529590: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-12-04 01:40:40.529993: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-12-04 01:40:40.530318: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1304] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 5685 MB memory) -> physical GPU (device: 0, name: Tesla P4, pci bus id: 0000:00:04.0, compute capability: 6.1)
INFO:tensorflow:Restoring parameters from burgers-checkpoints/model.ckpt
I1204 01:40:40.531816 140489203267328 saver.py:1284] Restoring parameters from burgers-checkpoints/model.ckpt
I1204 01:40:40.552389 140489203267328 integrate.py:148] solve_ivp from 10.0 to 60.0
I1204 01:41:04.737420 140489203267328 integrate.py:158] nfev: 15005, njev: 0, nlu: 0
I1204 01:41:04.737697 140489203267328 integrate.py:159] status: 0, message: The solver successfully reached the end of the integration interval.
I1204 01:41:04.737805 140489203267328 integrate.py:162] output has length 501
2019-12-04 01:41:04.883589: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-12-04 01:41:04.884063: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1618] Found device 0 with properties:
name: Tesla P4 major: 6 minor: 1 memoryClockRate(GHz): 1.1135
pciBusID: 0000:00:04.0
2019-12-04 01:41:04.884211: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1
2019-12-04 01:41:04.884273: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcublas.so.10
2019-12-04 01:41:04.884297: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcufft.so.10
2019-12-04 01:41:04.884319: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcurand.so.10
2019-12-04 01:41:04.884338: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusolver.so.10
2019-12-04 01:41:04.884358: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusparse.so.10
2019-12-04 01:41:04.884378: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7
2019-12-04 01:41:04.884519: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-12-04 01:41:04.884937: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-12-04 01:41:04.885270: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1746] Adding visible gpu devices: 0
2019-12-04 01:41:04.885318: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1159] Device interconnect StreamExecutor with strength 1 edge matrix:
2019-12-04 01:41:04.885331: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1165] 0
2019-12-04 01:41:04.885344: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1178] 0: N
2019-12-04 01:41:04.885490: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-12-04 01:41:04.885882: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-12-04 01:41:04.886202: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1304] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 5685 MB memory) -> physical GPU (device: 0, name: Tesla P4, pci bus id: 0000:00:04.0, compute capability: 6.1)
INFO:tensorflow:Restoring parameters from burgers-checkpoints/model.ckpt
I1204 01:41:04.887774 140489203267328 saver.py:1284] Restoring parameters from burgers-checkpoints/model.ckpt
I1204 01:41:04.908460 140489203267328 integrate.py:148] solve_ivp from 10.0 to 60.0
I1204 01:41:29.194495 140489203267328 integrate.py:158] nfev: 15005, njev: 0, nlu: 0
I1204 01:41:29.194733 140489203267328 integrate.py:159] status: 0, message: The solver successfully reached the end of the integration interval.
I1204 01:41:29.194800 140489203267328 integrate.py:162] output has length 501
I1204 01:41:29.236630 140491107764096 fn_api_runner.py:659] Running ((((create|load|reshuffle|integrate|combine|finalize/combine/CombinePerKey/Group/Read)+(create|load|reshuffle|integrate|combine|finalize/combine/CombinePerKey/Merge))+(create|load|reshuffle|integrate|combine|finalize/combine/CombinePerKey/ExtractOutputs))+(ref_AppliedPTransform_create|load|reshuffle|integrate|combine|finalize/combine/UnKey_26))+(ref_PCollection_PCollection_16/Write)
I1204 01:41:29.282536 140491107764096 fn_api_runner.py:659] Running ((ref_AppliedPTransform_create|load|reshuffle|integrate|combine|finalize/combine/DoOnce/Read_28)+(ref_AppliedPTransform_create|load|reshuffle|integrate|combine|finalize/combine/InjectDefault_29))+(ref_AppliedPTransform_create|load|reshuffle|integrate|combine|finalize/finalize_30)
CPU times: user 1.88 s, sys: 320 ms, total: 2.2 s
Wall time: 7min 55s
Evaluations have been saved to burgers-checkpoints/results.nc
, but we'll download them from cloud storage instead:
In [35]:
! gsutil cp gs://data-driven-discretization-public/time-evolution/model/burgers_16x_samples.nc .
Copying gs://data-driven-discretization-public/time-evolution/model/burgers_16x_samples.nc...
/ [1 files][ 1.2 MiB/ 1.2 MiB]
Operation completed over 1 objects/1.2 MiB.
In [0]:
import xarray
results = xarray.open_dataset('burgers_16x_samples.nc').load()
In [6]:
results
Out[6]:
<xarray.Dataset>
Dimensions: (sample: 10, time: 501, x: 32)
Coordinates:
* time (time) float64 10.0 10.1 10.2 10.3 10.4 ... 59.7 59.8 59.9 60.0
* x (x) float64 0.0 0.1963 0.3927 0.589 ... 5.498 5.694 5.89 6.087
* sample (sample) int32 0 1 2 3 4 5 6 7 8 9
num_evals int32 15005
Data variables:
y (sample, time, x) float64 -1.283 -1.241 -0.9779 ... 0.2227 0.757
In [11]:
reference
Out[11]:
<xarray.Dataset>
Dimensions: (sample: 10, time: 1001, x: 512)
Coordinates:
* time (time) float64 10.0 10.1 10.2 10.3 ... 109.7 109.8 109.9 110.0
* x (x) float64 0.0 0.01227 0.02454 0.03682 ... 6.246 6.259 6.271
num_evals (sample) int32 112853 104861 113612 ... 103469 103082 111458
* sample (sample) int32 0 1 2 3 4 5 6 7 8 9
Data variables:
y (sample, time, x) float64 -1.237 -1.247 ... -0.8157 -0.8237
An example solution from our reference model, at high resolution:
In [14]:
reference.y[0].sel(time=slice(10, 60)).plot.imshow()
Out[14]:
<matplotlib.image.AxesImage at 0x7fbc800e9c18>
Coarse-grained simulation with our neural network:
In [25]:
results.y[0].plot.imshow()
Out[25]:
<matplotlib.image.AxesImage at 0x7fbc32203940>
Difference between the neural network results and coarse-grained reference results:
In [34]:
(results.y.sel(sample=0)
- reference.y.sel(sample=0, time=slice(10, 60)).coarsen(x=16).mean()
.assign_coords(x=results.x)).plot.imshow()
Out[34]:
<matplotlib.image.AxesImage at 0x7fbc266861d0>
As you can see, the model does a pretty reasonable job, despite the much coarser grid.
Content source: google/data-driven-discretization-1d
Similar notebooks: