In [1]:
    
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
    
    
In [3]:
    
learning_rate = 0.001
batch_size = 100
display_step = 1
model_path = "./data/model.ckpt"
n_hidden_1 = 256
n_hidden_2 = 256
n_input =784
n_classes = 10
X = tf.placeholder(tf.float32, [None, n_input])
Y = tf.placeholder(tf.float32, [None, n_classes])
# Create model
def multilayer_perceptron(X, weights, biases):
    # Hidden layer with RELU activation
    layer_1 = tf.add(tf.matmul(X, weights['h1']), biases['b1'])
    layer_1 = tf.nn.relu(layer_1)
    # Hidden layer with RELU activation
    layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])
    layer_2 = tf.nn.relu(layer_2)
    # Output layer with linear activation
    out_layer = tf.matmul(layer_2, weights['out']) + biases['out']
    return out_layer
# Store layers weight & bias
weights = {
    'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
    'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
    'out': tf.Variable(tf.random_normal([n_hidden_2, n_classes]))
}
biases = {
    'b1': tf.Variable(tf.random_normal([n_hidden_1])),
    'b2': tf.Variable(tf.random_normal([n_hidden_2])),
    'out': tf.Variable(tf.random_normal([n_classes]))
}
# Construct model
pred = multilayer_perceptron(X, weights, biases)
# Define loss and optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, Y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
# Initializing the variables
init = tf.initialize_all_variables()
    
In [4]:
    
# 'Saver' op to save and restore all the variables
saver = tf.train.Saver()
    
In [5]:
    
with tf.Session() as sess:
    sess.run(init)
    
    for epoch in range(100):
        avg_cost = 0.
        total_batch = int(mnist.train.num_examples/batch_size)
        
        for i in range(batch_size):
            batch_X, batch_Y  = mnist.train.next_batch(batch_size)
            _, c = sess.run([optimizer, cost], feed_dict={X:batch_X, Y:batch_Y})
            
            avg_cost += c/total_batch
        if epoch % display_step == 0:
            print( "Epoch:", '%04d' % (epoch+1), "cost=", \
                "{:.9f}".format(avg_cost))
    print("First Optimization Finished!")
    
    correct_prediction = tf.equal(tf.argmax(pred, 1 ), tf.argmax(y,1))
    
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    print("Accuracy : "+ str(accuracy.eval({X:mnist.test.images, Y:mnist.test.labels})) )
    
    save_path = saver.save(sess,model_path)
    print("Model saved in file : %s" % save_path)
    
    
    
In [ ]:
    
print("restore!")
with tf.Session() as sess:
    sess.run(init)
    
    load_path = save.restore(sess, model_path)
    
    for epoch in range(10):