In [1]:
%matplotlib inline
%pylab inline
In [2]:
import menpo.io as mio
from menpo.landmark import labeller, ibug_face_49
from menpofast.utils import convert_from_menpo
path = '/data/'
group = 'ibug_face_49'
training_images = []
for i in mio.import_images(path + 'PhD/DataBases/faces/lfpw/trainset/',
verbose=True, max_images=None):
# convert the image from menpo Image to menpofast Image (channels at front)
i = convert_from_menpo(i)
labeller(i, 'PTS', eval(group))
i.crop_to_landmarks_proportion_inplace(0.5, group='PTS')
i = i.rescale_landmarks_to_diagonal_range(200, group=group)
if i.n_channels == 3:
i = i.as_greyscale(mode='average')
training_images.append(i)
In [3]:
for i in mio.import_images(path + 'PhD/DataBases/faces/helen/trainset/',
verbose=True, max_images=None):
# convert the image from menpo Image to menpofast Image (channels at front)
i = convert_from_menpo(i)
labeller(i, 'PTS', eval(group))
i.crop_to_landmarks_proportion_inplace(0.5, group='PTS')
i = i.rescale_landmarks_to_diagonal_range(200, group=group)
if i.n_channels == 3:
i = i.as_greyscale(mode='average')
training_images.append(i)
In [4]:
for i in mio.import_images(path + 'PhD/DataBases/faces/ibug/',
verbose=True, max_images=None):
# convert the image from menpo Image to menpofast Image (channels at front)
i = convert_from_menpo(i)
labeller(i, 'PTS', eval(group))
i.crop_to_landmarks_proportion_inplace(0.5, group='PTS')
i = i.rescale_landmarks_to_diagonal_range(200, group=group)
if i.n_channels == 3:
i = i.as_greyscale(mode='average')
training_images.append(i)
In [5]:
from menpo.visualize import visualize_images
visualize_images(training_images)
In [6]:
from menpofast.feature import no_op, fast_dsift
from alabortcvpr2015.aam import PartsAAMBuilder
from alabortcvpr2015.utils import pickle_dump
#n_images = [pow(2,i) for i in range(5, 12)]
#for j, limit in enumerate(n_images):
# aam = PartsAAMBuilder(parts_shape=(17, 17),
# features=fast_dsift,
# diagonal=100,
# normalize_parts=False,
# scales=(1, .5),
# max_shape_components=25,
# max_appearance_components=500).build(training_images[:limit],
# group=group,
# verbose=True)
# pickle_dump(aam, path + 'PhD/Models/aam_lfpw_fast_dsift' + str(j))
# del aam
aam = PartsAAMBuilder(parts_shape=(17, 17),
features=fast_dsift,
diagonal=100,
normalize_parts=False,
scales=(1, .5),
max_shape_components=25,
max_appearance_components=500).build(training_images,
group=group,
verbose=True)
pickle_dump(aam, path + 'PhD/Models/aam_lfpw_fast_dsift' + str(7))