This notebook is intended to allow cleaning manually the rider power-profile to discover which ride is completely fucked up.
In [7]:
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from skcycling.data_management import Rider
from datetime import date
In [35]:
filename = '../data/rider/user_5.p'
my_rider = Rider.load_from_pickles(filename)
In [30]:
for rpp in my_rider.rides_pp_:
if np.ndarray.max(rpp.data_) > 1800:
#if rpp.data_[100*60] > 300:
print rpp.date_profile_
print rpp.data_
In [31]:
# Remove some files from the rpp
# rider 1
# my_rider.delete_ride(date(2014,7,15))
# my_rider.delete_ride(date(2014,8,25))
# rider 2
# my_rider.delete_ride(date(2012,7,3))
# my_rider.delete_ride(date(2015,8,11))
# rider 3
# my_rider.delete_ride(date(2015,5,10))
Out[31]:
In [36]:
plt.figure(figsize=(14, 10))
for rpp in my_rider.rides_pp_:
t = np.linspace(0, rpp.max_duration_profile_, rpp.data_.size)
plt.plot(t, rpp.data_)
plt.ylabel('Power in watt (W)')
plt.xlabel('Time in minute (min)')
plt.show()
In [37]:
plt.figure(figsize=(14, 10))
# Force to compute the record power-profile
my_rider.compute_record_pp()
t = np.linspace(0, my_rider.max_duration_profile_, my_rider.record_pp_.data_.size)
plt.plot(t, my_rider.record_pp_.data_)
plt.ylabel('Power in watt (W)')
plt.xlabel('Time in minute (min)')
plt.show()
In [34]:
my_rider.save_to_pickles(filename)