Import the necessary library
In [ ]:
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from skcycling.data_management import Rider
The rider data can be loaded from pickles files.
In [ ]:
filename = '../../data/rider/user_5.p'
my_rider = Rider.load_from_pickles(filename)
print 'This rider has {} rides.'.format(len(my_rider.rides_pp_))
The record power-profile as well as each ride power-profile can be shown easily.
In [ ]:
plt.figure(figsize=(14, 10))
for rpp in my_rider.rides_pp_:
t = np.linspace(0, rpp.max_duration_profile_, rpp.data_.size)
plt.plot(t, rpp.data_)
plt.ylabel('Power in watt (W)')
plt.xlabel('Time in minute (min)')
plt.show()
In [ ]:
plt.figure(figsize=(14, 10))
# Force to compute the record power-profile
my_rider.compute_record_pp()
t = np.linspace(0, my_rider.max_duration_profile_, my_rider.record_pp_.data_.size)
plt.plot(t, my_rider.record_pp_.data_)
plt.ylabel('Power in watt (W)')
plt.xlabel('Time in minute (min)')
plt.show()