Algorithms Exercise 2

Imports


In [1]:
%matplotlib inline
from matplotlib import pyplot as plt
import seaborn as sns
import numpy as np

Peak finding

Write a function find_peaks that finds and returns the indices of the local maxima in a sequence. Your function should:

  • Properly handle local maxima at the endpoints of the input array.
  • Return a Numpy array of integer indices.
  • Handle any Python iterable as input.

In [4]:
def find_peaks(a):
    """Find the indices of the local maxima in a sequence."""
    b = np.array(a)
    c = b.max()
    return b[c]

In [5]:
p1 = find_peaks([2,0,1,0,2,0,1])
assert np.allclose(p1, np.array([0,2,4,6]))
p2 = find_peaks(np.array([0,1,2,3]))
assert np.allclose(p2, np.array([3]))
p3 = find_peaks([3,2,1,0])
assert np.allclose(p3, np.array([0]))


---------------------------------------------------------------------------
AssertionError                            Traceback (most recent call last)
<ipython-input-5-e9503c7dbdc3> in <module>()
      1 p1 = find_peaks([2,0,1,0,2,0,1])
----> 2 assert np.allclose(p1, np.array([0,2,4,6]))
      3 p2 = find_peaks(np.array([0,1,2,3]))
      4 assert np.allclose(p2, np.array([3]))
      5 p3 = find_peaks([3,2,1,0])

AssertionError: 

Here is a string with the first 10000 digits of $\pi$ (after the decimal). Write code to perform the following:

  • Convert that string to a Numpy array of integers.
  • Find the indices of the local maxima in the digits of $\pi$.
  • Use np.diff to find the distances between consequtive local maxima.
  • Visualize that distribution using an appropriately customized histogram.

In [ ]:
from sympy import pi, N
pi_digits_str = str(N(pi, 10001))[2:]

In [ ]:
# YOUR CODE HERE
raise NotImplementedError()

In [ ]:
assert True # use this for grading the pi digits histogram