Project Euler: Problem 6

https://projecteuler.net/problem=6

The sum of the squares of the first ten natural numbers is,

$$1^2 + 2^2 + ... + 10^2 = 385$$

The square of the sum of the first ten natural numbers is,

$$(1 + 2 + ... + 10)^2 = 552 = 3025$$

Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 − 385 = 2640.


In [14]:
def Euler(n):
    x = list(range(1,n+1))
    y = 0
    z = 0
    for item in x:
        a = item**2
        y += a
    for item in x:
        z += item
    z = z**2
    answer = abs(y - z)
    return answer

print(Euler(100))


25164150

In [ ]:
# This cell will be used for grading, leave it at the end of the notebook.