In [1]:
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from behav import plotting, utils, loading
import seaborn as sns
sns.set_style("whitegrid")
data_path = '/mnt/cube/RawData/Zog/'
subjects = (
'B1178',
'B1186',
'B1049',
'B1188',
)
In [2]:
%%time
behav_data = loading.load_data_pandas(subjects, data_path)
In [3]:
for subj,data in behav_data.items():
pc_fig = plotting.plot_filtered_performance_calendar(subj, data, num_days=20)
In [4]:
for subj,df in behav_data.items():
ci_acc_fig = plotting.plot_ci_accuracy(subj, df)
In [5]:
for subj,df in behav_data.items():
daily_acc_fig = plotting.plot_daily_accuracy(subj, df, x_axis='trial_num')
In [6]:
trial_feeds_fig = plotting.plot_trial_feeds(behav_data)