notebook.community
Edit and run
Mulit-dimension variables and distribution
If the 2-dimensional variables $X,Y$'s ditributional function is $F(x,y)$, and statisfiy the equation: $$F(x,y)=\int_{-\infty}^{y}\int_{-\infty}^{x}f(u,v)dudv$$ for any $x,y$。
$F_x(x)=P(X\le x)=P(X\le x,y<+\infty)=F(x,+\infty)$
$F_y(y)=P(Y\le y)=P(x\le +\infty,Y<y)=F(+\infty,y)$
$p_{i\cdot}=P(X=x_i)=\sum_{j=1}^{+\infty}P_{ij}$
$p_{\cdot j}=P(Y=y_j)=\sum_{i=1}^{+\infty}P_{ij}$
$f_X(x)=\int_{-\infty}^{+\infty}f(x,y)dy$
$f_Y(y)=\int_{-\infty}^{+\infty}f(x,y)dx$
$P(X=x_i | Y=y_j)=\frac{P(X=x_i,Y=y_j)}{P(Y=y_j)}=\frac{p_{ij}}{p_{\cdot j}}$
$P(Y=y_j | X=x_i)=\frac{P(X=x_i,Y=y_j)}{P(X=x_i)}=\frac{p_{ij}}{p_{i \cdot}}$
$f_{X|Y}(x|y)=\frac{f(x,y)}{f_y{(y)}}$
$f_{Y|X}(y|x)=\frac{f(x,y)}{f_x{(x)}}$
$F_{X|Y}(x|y)=P(X\le x | Y=y)=\int_{-\infty}^{x}\frac{f(x,y)}{f_Y(y)}dx$
$F_{Y|X}(y|x)=P(Y\le y | X=x)=\int_{-\infty}^{y}\frac{f(x,y)}{f_X(x)}dy$
In [ ]: