In [1]:
from sympy import *
In [2]:
x = Symbol("x")
In [3]:
limit(exp(x)*exp(x**2)*(erf(x+1/exp(x))-erf(x)), x, oo)
Out[3]:
The examples here show the limit computation on exp-log expressions (from Gruntz' thesis pp. 122 to 123)
Eqn 8.1
In [4]:
exp(x)*(exp(1/x-exp(-x))-exp(1/x))
Out[4]:
In [5]:
limit(_, x, oo)
Out[5]:
Eqn 8.2
In [6]:
exp(x)*(exp(1/x+exp(-x)+exp(-x**2)) - exp(1/x-exp(-exp(x))))
Out[6]:
In [7]:
limit(_, x, oo)
Out[7]:
Eqn 8.3
In [8]:
exp(exp(x-exp(-x))/(1-1/x)) - exp(exp(x))
Out[8]:
In [9]:
limit(_, x, oo)
Out[9]:
Eqn 8.4
In [10]:
exp(exp(exp(x)/(1-1/x))) - exp(exp(exp(x)/(1-1/x-log(x)**(-log(x)))))
Out[10]:
In [11]:
limit(_, x, oo)
Out[11]:
Eqn 8.5
In [12]:
exp(exp(exp(x+exp(-x)))) / exp(exp(exp(x)))
Out[12]:
In [13]:
limit(_, x, oo)
Out[13]:
Eqn 8.6
In [14]:
exp(exp(exp(x))) / exp(exp(exp(x-exp(-exp(x)))))
Out[14]:
In [15]:
limit(_, x, oo)
Out[15]:
Eqn 8.7
In [16]:
exp(exp(exp(x))) / exp(exp(exp(x-exp(-exp(exp(x))))))
Out[16]:
In [17]:
limit(_, x, oo)
Out[17]:
Eqn 8.8
In [18]:
exp(exp(x)) / exp(exp(x-exp(-exp(exp(x)))))
Out[18]:
In [19]:
limit(_, x, oo)
Out[19]:
Eqn 8.9
In [20]:
log(x)**2 * exp(sqrt(log(x))*(log(log(x)))**2 * exp(sqrt(log(log(x))) * (log(log(log(x))))**3)) / sqrt(x)
Out[20]:
In [21]:
limit(_, x, oo)
Out[21]:
Eqn 8.10
In [22]:
(x*log(x)*(log(x*exp(x)-x**2))**2) / (log(log(x**2+2*exp(exp(3*x**3*log(x))))))
Out[22]:
In [23]:
limit(_, x, oo)
Out[23]:
Eqn 8.11
In [24]:
(exp(x*exp(-x)/(exp(-x)+exp(-2*x**2/(x+1)))) - exp(x))/x
Out[24]:
In [25]:
limit(_, x, oo)
Out[25]:
Eqn 8.12
In [26]:
(3**x + 5**x)**(1/x)
Out[26]:
In [27]:
limit(_, x, oo)
Out[27]:
Eqn 8.13
In [28]:
x/log(x**(log(x**(log(2)/log(x)))))
Out[28]:
In [29]:
limit(_, x, oo)
Out[29]:
Eqn 8.14
In [30]:
exp(exp(2*log(x**5+x)*log(log(x)))) / exp(exp(10*log(x)*log(log(x))))
Out[30]:
In [31]:
limit(_, x, oo)
Out[31]:
Eqn 8.15
In [32]:
4*exp(exp(S(5)/2*x**(-S(5)/7)+ S(21)/8*x**(S(6)/11)+2*x**(-8)+S(54)/17*x**(S(49)/45) ))**8 / (9*log(log(-log(S(4)/3*x**(-S(5)/14))))**(S(7)/6))
Out[32]:
In [33]:
limit(_, x, oo)
Out[33]:
Eqn 8.16
In [34]:
(exp(4*x*exp(-x)/(1/exp(x)+1/exp(2*x**2/(x+1)))) - exp(x)) / exp(x)**4
Out[34]:
In [35]:
limit(_, x, oo)
Out[35]:
Eqn 8.17
In [36]:
exp(x*exp(-x)/(exp(-x)+exp(-2*x**2/(x+1))))/exp(x)
Out[36]:
In [37]:
limit(_, x, oo)
Out[37]:
Eqn 8.18
In [38]:
(exp(exp(-x/(1+exp(-x))))*exp(-x/(1+exp(-x/(1+exp(-x)))))*exp(exp(-x+exp(-x/(1+exp(-x)))))) / (exp(-x/(1+exp(-x))))**2 - exp(x) + x
Out[38]:
In [39]:
limit(_, x, oo)
Out[39]:
Eqn 8.19
In [40]:
log(x)*(log(log(x)+log(log(x))) - log(log(x))) / (log(log(x)+log(log(log(x)))))
Out[40]:
In [41]:
limit(_, x, oo)
Out[41]:
Eqn 8.20
In [42]:
exp((log(log(x+exp(log(x)*log(log(x)))))) / (log(log(log(exp(x)+x+log(x))))))
Out[42]:
In [43]:
limit(_, x, oo)
Out[43]:
The following examples show limit computation on special functions (from Gruntz' thesis p. 126)
Eqn 8.21
In [44]:
exp(x)*(sin(1/x+exp(-x))-sin(1/x+exp(-x**2)))
Out[44]:
In [45]:
limit(_, x, oo)
Out[45]:
Eqn 8.22
In [46]:
exp(exp(x)) * (exp(sin(1/x+exp(-exp(x)))) - exp(sin(1/x)))
Out[46]:
In [47]:
limit(_, x, oo)
Out[47]:
Eqn 8.23
In [48]:
(erf(x-exp(-exp(x))) - erf(x)) * exp(exp(x)) * exp(x**2)
Out[48]:
In [49]:
limit(_, x, oo)
Out[49]:
Eqn 8.24
In [50]:
(Ei(x-exp(-exp(x))) - Ei(x)) *exp(-x)*exp(exp(x))*x
Out[50]:
In [51]:
limit(_, x, oo)
Out[51]:
Eqn 8.25
In [52]:
exp((log(2)+1)*x) * (zeta(x+exp(-x)) - zeta(x))
Out[52]:
In [53]:
#limit(_, x, oo)
Eqn 8.26
In [54]:
exp(x)*(gamma(x+exp(-x)) - gamma(x))
Out[54]:
In [55]:
limit(_, x, oo)
Out[55]:
Eqn 8.27
In [56]:
exp(gamma(x-exp(-x))*exp(1/x)) - exp(gamma(x))
Out[56]:
In [57]:
#limit(_, x, oo)
Eqn 8.28
In [58]:
(gamma(x+1/gamma(x)) - gamma(x)) / log(x)
Out[58]:
In [59]:
limit(_, x, oo)
Out[59]:
Eqn 8.29
In [60]:
x * (gamma(x-1/gamma(x)) - gamma(x) + log(x))
Out[60]:
In [61]:
limit(_, x, oo)
Out[61]:
Eqn 8.30
In [62]:
((gamma(x+1/gamma(x)) - gamma(x))/log(x) - cos(1/x))*x*log(x)
Out[62]:
In [63]:
limit(_, x, oo)
Out[63]:
Eqn 8.31
In [64]:
gamma(x+1)/sqrt(2*pi) - exp(-x)*(x**(x+S(1)/2) + x**(x-S(1)/2)/12)
Out[64]:
In [65]:
limit(_, x, oo)
Out[65]:
Eqn 8.32
In [66]:
log(gamma(gamma(x)))/exp(x)
Out[66]:
In [67]:
limit(_, x, oo)
Out[67]:
Eqn 8.33
In [68]:
exp(exp(digamma(digamma(x))))/x
Out[68]:
In [69]:
limit(_, x, oo)
Out[69]:
Eqn 8.34
In [70]:
exp(exp(digamma(log(x))))/x
Out[70]:
In [71]:
limit(_, x, oo)
Out[71]:
Eqn 8.35
In [72]:
exp(exp(exp(digamma(digamma(digamma(x))))))/x
Out[72]:
In [73]:
limit(_, x, oo)
Out[73]:
Eqn 8.36
In [74]:
besselj(2,x)*exp(x*(2*log(2+sqrt(3))-sqrt(3)))*sqrt(x)
Out[74]:
In [75]:
#limit(_, x, oo)
Eqn 8.37
In [76]:
Max(x, exp(x))/log(Min(exp(-x), exp(-exp(x))))
Out[76]:
In [77]:
#limit(_, x, oo)
Some other examples
In [78]:
digamma(digamma(digamma(x)))
Out[78]:
In [79]:
limit(_, x, oo)
Out[79]:
In [80]:
loggamma(loggamma(x))
Out[80]:
In [81]:
limit(_, x, oo)
Out[81]: