Chapter 12 – Distributed TensorFlow

This notebook contains all the sample code and solutions to the exercises in chapter 12.

Setup

First, let's make sure this notebook works well in both python 2 and 3, import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures:


In [1]:
# To support both python 2 and python 3
from __future__ import division, print_function, unicode_literals

# Common imports
import numpy as np
import os

# to make this notebook's output stable across runs
def reset_graph(seed=42):
    tf.reset_default_graph()
    tf.set_random_seed(seed)
    np.random.seed(seed)

# To plot pretty figures
%matplotlib inline
import matplotlib
import matplotlib.pyplot as plt
plt.rcParams['axes.labelsize'] = 14
plt.rcParams['xtick.labelsize'] = 12
plt.rcParams['ytick.labelsize'] = 12

# Where to save the figures
PROJECT_ROOT_DIR = "."
CHAPTER_ID = "distributed"

def save_fig(fig_id, tight_layout=True):
    path = os.path.join(PROJECT_ROOT_DIR, "images", CHAPTER_ID, fig_id + ".png")
    print("Saving figure", fig_id)
    if tight_layout:
        plt.tight_layout()
    plt.savefig(path, format='png', dpi=300)

Local server


In [2]:
import tensorflow as tf

In [3]:
c = tf.constant("Hello distributed TensorFlow!")
server = tf.train.Server.create_local_server()

In [4]:
with tf.Session(server.target) as sess:
    print(sess.run(c))


b'Hello distributed TensorFlow!'

Cluster


In [5]:
cluster_spec = tf.train.ClusterSpec({
    "ps": [
        "127.0.0.1:2221",  # /job:ps/task:0
        "127.0.0.1:2222",  # /job:ps/task:1
    ],
    "worker": [
        "127.0.0.1:2223",  # /job:worker/task:0
        "127.0.0.1:2224",  # /job:worker/task:1
        "127.0.0.1:2225",  # /job:worker/task:2
    ]})

In [6]:
task_ps0 = tf.train.Server(cluster_spec, job_name="ps", task_index=0)
task_ps1 = tf.train.Server(cluster_spec, job_name="ps", task_index=1)
task_worker0 = tf.train.Server(cluster_spec, job_name="worker", task_index=0)
task_worker1 = tf.train.Server(cluster_spec, job_name="worker", task_index=1)
task_worker2 = tf.train.Server(cluster_spec, job_name="worker", task_index=2)

Pinning operations across devices and servers


In [7]:
reset_graph()

with tf.device("/job:ps"):
    a = tf.Variable(1.0, name="a")

with tf.device("/job:worker"):
    b = a + 2

with tf.device("/job:worker/task:1"):
    c = a + b

In [8]:
with tf.Session("grpc://127.0.0.1:2221") as sess:
    sess.run(a.initializer)
    print(c.eval())


4.0

In [9]:
reset_graph()

with tf.device(tf.train.replica_device_setter(
        ps_tasks=2,
        ps_device="/job:ps",
        worker_device="/job:worker")):
    v1 = tf.Variable(1.0, name="v1")  # pinned to /job:ps/task:0 (defaults to /cpu:0)
    v2 = tf.Variable(2.0, name="v2")  # pinned to /job:ps/task:1 (defaults to /cpu:0)
    v3 = tf.Variable(3.0, name="v3")  # pinned to /job:ps/task:0 (defaults to /cpu:0)
    s = v1 + v2            # pinned to /job:worker (defaults to task:0/cpu:0)
    with tf.device("/task:1"):
        p1 = 2 * s         # pinned to /job:worker/task:1 (defaults to /cpu:0)
        with tf.device("/cpu:0"):
            p2 = 3 * s     # pinned to /job:worker/task:1/cpu:0

config = tf.ConfigProto()
config.log_device_placement = True

with tf.Session("grpc://127.0.0.1:2221", config=config) as sess:
    v1.initializer.run()

Readers – the old way


In [10]:
reset_graph()

In [11]:
default1 = tf.constant([5.])
default2 = tf.constant([6])
default3 = tf.constant([7])
dec = tf.decode_csv(tf.constant("1.,,44"),
                    record_defaults=[default1, default2, default3])
with tf.Session() as sess:
    print(sess.run(dec))


[1.0, 6, 44]

In [12]:
reset_graph()

test_csv = open("my_test.csv", "w")
test_csv.write("x1, x2 , target\n")
test_csv.write("1.,, 0\n")
test_csv.write("4., 5. , 1\n")
test_csv.write("7., 8. , 0\n")
test_csv.close()

filename_queue = tf.FIFOQueue(capacity=10, dtypes=[tf.string], shapes=[()])
filename = tf.placeholder(tf.string)
enqueue_filename = filename_queue.enqueue([filename])
close_filename_queue = filename_queue.close()

reader = tf.TextLineReader(skip_header_lines=1)
key, value = reader.read(filename_queue)

x1, x2, target = tf.decode_csv(value, record_defaults=[[-1.], [-1.], [-1]])
features = tf.stack([x1, x2])

instance_queue = tf.RandomShuffleQueue(
    capacity=10, min_after_dequeue=2,
    dtypes=[tf.float32, tf.int32], shapes=[[2],[]],
    name="instance_q", shared_name="shared_instance_q")
enqueue_instance = instance_queue.enqueue([features, target])
close_instance_queue = instance_queue.close()

minibatch_instances, minibatch_targets = instance_queue.dequeue_up_to(2)

with tf.Session() as sess:
    sess.run(enqueue_filename, feed_dict={filename: "my_test.csv"})
    sess.run(close_filename_queue)
    try:
        while True:
            sess.run(enqueue_instance)
    except tf.errors.OutOfRangeError as ex:
        print("No more files to read")
    sess.run(close_instance_queue)
    try:
        while True:
            print(sess.run([minibatch_instances, minibatch_targets]))
    except tf.errors.OutOfRangeError as ex:
        print("No more training instances")


No more files to read
[array([[ 4.,  5.],
       [ 1., -1.]], dtype=float32), array([1, 0], dtype=int32)]
[array([[7., 8.]], dtype=float32), array([0], dtype=int32)]
No more training instances

In [13]:
#coord = tf.train.Coordinator()
#threads = tf.train.start_queue_runners(coord=coord)
#filename_queue = tf.train.string_input_producer(["test.csv"])
#coord.request_stop()
#coord.join(threads)

Queue runners and coordinators


In [14]:
reset_graph()

filename_queue = tf.FIFOQueue(capacity=10, dtypes=[tf.string], shapes=[()])
filename = tf.placeholder(tf.string)
enqueue_filename = filename_queue.enqueue([filename])
close_filename_queue = filename_queue.close()

reader = tf.TextLineReader(skip_header_lines=1)
key, value = reader.read(filename_queue)

x1, x2, target = tf.decode_csv(value, record_defaults=[[-1.], [-1.], [-1]])
features = tf.stack([x1, x2])

instance_queue = tf.RandomShuffleQueue(
    capacity=10, min_after_dequeue=2,
    dtypes=[tf.float32, tf.int32], shapes=[[2],[]],
    name="instance_q", shared_name="shared_instance_q")
enqueue_instance = instance_queue.enqueue([features, target])
close_instance_queue = instance_queue.close()

minibatch_instances, minibatch_targets = instance_queue.dequeue_up_to(2)

n_threads = 5
queue_runner = tf.train.QueueRunner(instance_queue, [enqueue_instance] * n_threads)
coord = tf.train.Coordinator()

with tf.Session() as sess:
    sess.run(enqueue_filename, feed_dict={filename: "my_test.csv"})
    sess.run(close_filename_queue)
    enqueue_threads = queue_runner.create_threads(sess, coord=coord, start=True)
    try:
        while True:
            print(sess.run([minibatch_instances, minibatch_targets]))
    except tf.errors.OutOfRangeError as ex:
        print("No more training instances")


[array([[ 7.,  8.],
       [ 1., -1.]], dtype=float32), array([0, 0], dtype=int32)]
[array([[4., 5.]], dtype=float32), array([1], dtype=int32)]
No more training instances

In [15]:
reset_graph()

def read_and_push_instance(filename_queue, instance_queue):
    reader = tf.TextLineReader(skip_header_lines=1)
    key, value = reader.read(filename_queue)
    x1, x2, target = tf.decode_csv(value, record_defaults=[[-1.], [-1.], [-1]])
    features = tf.stack([x1, x2])
    enqueue_instance = instance_queue.enqueue([features, target])
    return enqueue_instance

filename_queue = tf.FIFOQueue(capacity=10, dtypes=[tf.string], shapes=[()])
filename = tf.placeholder(tf.string)
enqueue_filename = filename_queue.enqueue([filename])
close_filename_queue = filename_queue.close()

instance_queue = tf.RandomShuffleQueue(
    capacity=10, min_after_dequeue=2,
    dtypes=[tf.float32, tf.int32], shapes=[[2],[]],
    name="instance_q", shared_name="shared_instance_q")

minibatch_instances, minibatch_targets = instance_queue.dequeue_up_to(2)

read_and_enqueue_ops = [read_and_push_instance(filename_queue, instance_queue) for i in range(5)]
queue_runner = tf.train.QueueRunner(instance_queue, read_and_enqueue_ops)

with tf.Session() as sess:
    sess.run(enqueue_filename, feed_dict={filename: "my_test.csv"})
    sess.run(close_filename_queue)
    coord = tf.train.Coordinator()
    enqueue_threads = queue_runner.create_threads(sess, coord=coord, start=True)
    try:
        while True:
            print(sess.run([minibatch_instances, minibatch_targets]))
    except tf.errors.OutOfRangeError as ex:
        print("No more training instances")


[array([[ 4.,  5.],
       [ 1., -1.]], dtype=float32), array([1, 0], dtype=int32)]
[array([[7., 8.]], dtype=float32), array([0], dtype=int32)]
No more training instances

Setting a timeout


In [16]:
reset_graph()

q = tf.FIFOQueue(capacity=10, dtypes=[tf.float32], shapes=[()])
v = tf.placeholder(tf.float32)
enqueue = q.enqueue([v])
dequeue = q.dequeue()
output = dequeue + 1

config = tf.ConfigProto()
config.operation_timeout_in_ms = 1000

with tf.Session(config=config) as sess:
    sess.run(enqueue, feed_dict={v: 1.0})
    sess.run(enqueue, feed_dict={v: 2.0})
    sess.run(enqueue, feed_dict={v: 3.0})
    print(sess.run(output))
    print(sess.run(output, feed_dict={dequeue: 5}))
    print(sess.run(output))
    print(sess.run(output))
    try:
        print(sess.run(output))
    except tf.errors.DeadlineExceededError as ex:
        print("Timed out while dequeuing")


2.0
6.0
3.0
4.0
Timed out while dequeuing

Data API

The Data API, introduced in TensorFlow 1.4, makes reading data efficiently much easier.


In [17]:
tf.reset_default_graph()

Let's start with a simple dataset composed of three times the integers 0 to 9, in batches of 7:


In [18]:
dataset = tf.data.Dataset.from_tensor_slices(np.arange(10))
dataset = dataset.repeat(3).batch(7)

The first line creates a dataset containing the integers 0 through 9. The second line creates a new dataset based on the first one, repeating its elements three times and creating batches of 7 elements. As you can see, we start with a source dataset, then we chain calls to various methods to apply transformations to the data.

Next, we create a one-shot-iterator to go through this dataset just once, and we call its get_next() method to get a tensor that represents the next element.


In [19]:
iterator = dataset.make_one_shot_iterator()
next_element = iterator.get_next()

Let's repeatedly evaluate next_element to go through the dataset. When there are not more elements, we get an OutOfRangeError:


In [20]:
with tf.Session() as sess:
    try:
        while True:
            print(next_element.eval())
    except tf.errors.OutOfRangeError:
        print("Done")


[0 1 2 3 4 5 6]
[7 8 9 0 1 2 3]
[4 5 6 7 8 9 0]
[1 2 3 4 5 6 7]
[8 9]
Done

Great! It worked fine.

Note that, as always, a tensor is only evaluated once each time we run the graph (sess.run()): so even if we evaluate multiple tensors that all depend on next_element, it is only evaluated once. This is true as well if we ask for next_element to be evaluated twice in just one run:


In [21]:
with tf.Session() as sess:
    try:
        while True:
            print(sess.run([next_element, next_element]))
    except tf.errors.OutOfRangeError:
        print("Done")


[array([0, 1, 2, 3, 4, 5, 6]), array([0, 1, 2, 3, 4, 5, 6])]
[array([7, 8, 9, 0, 1, 2, 3]), array([7, 8, 9, 0, 1, 2, 3])]
[array([4, 5, 6, 7, 8, 9, 0]), array([4, 5, 6, 7, 8, 9, 0])]
[array([1, 2, 3, 4, 5, 6, 7]), array([1, 2, 3, 4, 5, 6, 7])]
[array([8, 9]), array([8, 9])]
Done

The interleave() method is powerful but a bit tricky to grasp at first. The easiest way to understand it is to look at an example:


In [22]:
tf.reset_default_graph()

In [23]:
dataset = tf.data.Dataset.from_tensor_slices(np.arange(10))
dataset = dataset.repeat(3).batch(7)
dataset = dataset.interleave(
    lambda v: tf.data.Dataset.from_tensor_slices(v),
    cycle_length=3,
    block_length=2)
iterator = dataset.make_one_shot_iterator()
next_element = iterator.get_next()

In [24]:
with tf.Session() as sess:
    try:
        while True:
            print(next_element.eval(), end=",")
    except tf.errors.OutOfRangeError:
        print("Done")


0,1,7,8,4,5,2,3,9,0,6,7,4,5,1,2,8,9,6,3,0,1,2,8,9,3,4,5,6,7,Done

Because cycle_length=3, the new dataset starts by pulling 3 elements from the previous dataset: that's [0,1,2,3,4,5,6], [7,8,9,0,1,2,3] and [4,5,6,7,8,9,0]. Then it calls the lambda function we gave it to create one dataset for each of the elements. Since we use Dataset.from_tensor_slices(), each dataset is going to return its elements one by one. Next, it pulls two items (since block_length=2) from each of these three datasets, and it iterates until all three datasets are out of items: 0,1 (from 1st), 7,8 (from 2nd), 4,5 (from 3rd), 2,3 (from 1st), 9,0 (from 2nd), and so on until 8,9 (from 3rd), 6 (from 1st), 3 (from 2nd), 0 (from 3rd). Next it tries to pull the next 3 elements from the original dataset, but there are just two left: [1,2,3,4,5,6,7] and [8,9]. Again, it creates datasets from these elements, and it pulls two items from each until both datasets are out of items: 1,2 (from 1st), 8,9 (from 2nd), 3,4 (from 1st), 5,6 (from 1st), 7 (from 1st). Notice that there's no interleaving at the end since the arrays do not have the same length.

Readers – the new way

Instead of using a source dataset based on from_tensor_slices() or from_tensor(), we can use a reader dataset. It handles most of the complexity for us (e.g., threads):


In [25]:
tf.reset_default_graph()

In [26]:
filenames = ["my_test.csv"]

In [27]:
dataset = tf.data.TextLineDataset(filenames)

We still need to tell it how to decode each line:


In [28]:
def decode_csv_line(line):
    x1, x2, y = tf.decode_csv(
        line, record_defaults=[[-1.], [-1.], [-1.]])
    X = tf.stack([x1, x2])
    return X, y

Next, we can apply this decoding function to each element in the dataset using map():


In [29]:
dataset = dataset.skip(1).map(decode_csv_line)

Finally, let's create a one-shot iterator:


In [30]:
it = dataset.make_one_shot_iterator()
X, y = it.get_next()

In [31]:
with tf.Session() as sess:
    try:
        while True:
            X_val, y_val = sess.run([X, y])
            print(X_val, y_val)
    except tf.errors.OutOfRangeError as ex:
        print("Done")


[ 1. -1.] 0.0
[4. 5.] 1.0
[7. 8.] 0.0
Done

Exercise solutions

Coming soon


In [ ]: