In [2]:
    
import numpy as np 
A_det = np.matrix('10 0; -2 100') #A-matrix
B_det = np.matrix('1 10')         #B-matrix
f = np.matrix('1000; 0')          #Functional unit vector f
g_LCA = B_det * A_det.I * f 
print("The deterministic result is:", g_LCA[0,0])
    
    
NB: this is a vectorized implementation of the MatLab code that was originally written by Reinout Heijungs & Sangwong Suh
In [4]:
    
s = A_det.I * f                                 #scaling vector s: inv(A_det)*f
Lambda = B_det * A_det.I;                       #B_det*inv(A)
dgdA = -(s * Lambda).T                          #Partial derivatives A-matrix
Gamma_A = np.multiply((A_det/g_LCA), dgdA)      #The multipliers of the A-matrix
print("The multipliers of the A-matrix are:")
print(Gamma_A)
dgdB = s.T                                      #Partial derivatives B-matrix
Gamma_B = np.multiply((B_det/g_LCA), dgdB)      #The multipliers of the B-matrix
print("The multipliers of the B-matrix are:")
print(Gamma_B)
    
    
In [ ]: