In [1]:
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
from scipy import integrate
The 2d polar integral of a scalar function $f(r, \theta)$ is defined as:
$$ I(r_{max}) = \int_0^{r_{max}} \int_0^{2\pi} f(r, \theta) r d\theta $$Write a function integrate_polar(f, rmax) that performs this integral numerically using scipy.integrate.dblquad.
In [13]:
def integrate_polar(f, rmax):
"""Integrate the function f(r, theta) over r=[0,rmax], theta=[0,2*np.pi]"""
# YOUR CODE HERE
d = lambda r, t: r * f(r, t)
#Sarah helped me fix the bounds for r.
s = lambda y: 0.0
l = lambda y: rmax
h, e = integrate.dblquad(d, 0.0, 2*np.pi, s, l)
return h
In [14]:
assert np.allclose(integrate_polar(lambda r,t: 1, 1.0), np.pi)
assert np.allclose(integrate_polar(lambda r, t: np.exp(-r)*(np.cos(t)**2), np.inf), np.pi)
In [ ]: