In [48]:
%matplotlib inline
from matplotlib import pyplot as plt
import seaborn as sns
import numpy as np
Write a function find_peaks that finds and returns the indices of the local maxima in a sequence. Your function should:
In [49]:
def find_peaks(a):
"""Find the indices of the local maxima in a sequence."""
# YOUR CODE HERE
#I always start with an empty list k.
k=[]
for i in range(0, len(a)):
#Check to see if the number in index i is greater than the numbers in the adjacent indicies, whilst being in range of the list.
if (i==len(a)-1 or a[i]>a[i+1]) and a[i]>a[i-1]:
k.append(i)
return np.array(k)
In [50]:
p1 = find_peaks([2,0,1,0,2,0,1])
assert np.allclose(p1, np.array([0,2,4,6]))
p2 = find_peaks(np.array([0,1,2,3]))
assert np.allclose(p2, np.array([3]))
p3 = find_peaks([3,2,1,0])
assert np.allclose(p3, np.array([0]))
Here is a string with the first 10000 digits of $\pi$ (after the decimal). Write code to perform the following:
np.diff to find the distances between consequtive local maxima.
In [51]:
from sympy import pi, N
pi_digits_str = str(N(pi, 10001))[2:]
In [62]:
# YOUR CODE HERE
h = pi_digits_str
j=[]
for i in h:
j.append(int(i))
n = np.array(j)
v = find_peaks(n)
m = np.diff(v)
f = plt.figure(figsize=(10,6))
plt.hist(m, bins=20)
plt.ylabel('Distance between maxima')
plt.xlabel('Index of maxima')
m
Out[62]:
In [40]:
assert True # use this for grading the pi digits histogram