In [1]:
%matplotlib inline
from matplotlib import pyplot as plt
import seaborn as sns
import numpy as np
Write a function find_peaks that finds and returns the indices of the local maxima in a sequence. Your function should:
In [60]:
def find_peaks(a):
"""Find the indices of the local maxima in a sequence."""
n = 0
x = []
if a[n] > a[n+1]:
x.append(n)
while n < len(a) - 2:
n = n + 1
if a[n] > a[n+1] and a[n] > a[n-1]:
x.append(n)
if a[n+1] > a[n]:
x.append(n+1)
y = np.asarray(x)
return y
print(find_peaks([2,0,1,0,2,0,1]))
In [61]:
p1 = find_peaks([2,0,1,0,2,0,1])
assert np.allclose(p1, np.array([0,2,4,6]))
p2 = find_peaks(np.array([0,1,2,3]))
assert np.allclose(p2, np.array([3]))
p3 = find_peaks([3,2,1,0])
assert np.allclose(p3, np.array([0]))
Here is a string with the first 10000 digits of $\pi$ (after the decimal). Write code to perform the following:
np.diff to find the distances between consequtive local maxima.
In [63]:
from sympy import pi, N
pi_digits_str = str(N(pi, 10001))[2:]
In [72]:
w = []
for ints in pi_digits_str:
w.append(ints)
x = find_peaks(w)
plt.hist(np.diff(x), bins = 20)
plt.show()
In [ ]:
assert True # use this for grading the pi digits histogram