In [20]:
    
from sklearn import datasets, neighbors, metrics
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
%matplotlib inline
    
In [2]:
    
iris = datasets.load_iris()
    
In [3]:
    
knn = neighbors.KNeighborsClassifier(n_neighbors=5, weights="uniform")
    
In [6]:
    
knn.fit(iris.data[:,2:], iris.target)
    
    Out[6]:
In [8]:
    
print(knn.predict(iris.data[:, :2]))
    
    
In [10]:
    
print(iris.target)
    
    
In [12]:
    
print(knn.score(iris.data[:, :2], iris.target))
    
    
In [23]:
    
n_neighbors = 3
X = iris.data[:, :2]
y = iris.target
h = .02  # step size in the mesh
# Create color maps
cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF'])
cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF'])
for weights in ['uniform', 'distance']:
    # we create an instance of Neighbours Classifier and fit the data.
    clf = neighbors.KNeighborsClassifier(n_neighbors=5, weights=weights)
    clf.fit(X, y)
    # Plot the decision boundary. For that, we will assign a color to each
    # point in the mesh [x_min, m_max]x[y_min, y_max].
    x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
    y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
                         np.arange(y_min, y_max, h))
    Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
    # Put the result into a color plot
    Z = Z.reshape(xx.shape)
    plt.figure()
    plt.pcolormesh(xx, yy, Z, cmap=cmap_light)
    # Plot also the training points
    plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold)
    plt.xlim(xx.min(), xx.max())
    plt.ylim(yy.min(), yy.max())
    plt.title("3-Class classification (k = %i, weights = '%s')"
              % (n_neighbors, weights))
plt.show()
    
    
    
In [ ]: