For the following games identify the best reponses:
$ A = \begin{pmatrix} 2 & 1\\ 1 & 1\end{pmatrix} \qquad B = \begin{pmatrix} 1 & 1\\ 1 & 3\end{pmatrix} $
$ A = \begin{pmatrix} 2 & 1 & 3 & 17\\ 27 & 3 & 1 & 1\\ 4 & 6 & 7 & 18 \end{pmatrix} \qquad B = \begin{pmatrix} 11 & 9 & 10 & 22\\ 0 & 1 & 1 & 0\\ 2 & 10 & 12 & 0 \end{pmatrix} $
$ A = \begin{pmatrix} 3 & 3 & 2 \\ 2 & 1 & 3 \end{pmatrix} \qquad B = \begin{pmatrix} 2 & 1 & 3 \\ 2 & 3 & 2 \end{pmatrix} $
$ A = \begin{pmatrix} 3 & -1\\ 2 & 7\end{pmatrix} \qquad B = \begin{pmatrix} -3 & 1\\ 1 & -6\end{pmatrix} $
Represent the following game in normal form:
Assume two neighbouring countries have at their disposal very destructive armies. If both countries attack each other the countries' civilian population will suffer 10 thousand casualties. If one country attacks whilst the other remains peaceful, the peaceful country will lose 15 thousand casualties but would also retaliate causing the offensive country 13 thousand casualties. If both countries remain peaceful then there are no casualties.
State and prove the best response condition.