- Give the general definition for a Prisoners dilemma.
Justify if the following games are Prisoners dilemmas or not:
- $
A =
\begin{pmatrix}
3 & 0\\
5 & 1
\end{pmatrix}
\qquad
B =
\begin{pmatrix}
3 & 5\\
0 & 1
\end{pmatrix}
$
- $
A =
\begin{pmatrix}
1 & -1\\
2 & 0
\end{pmatrix}
\qquad
B =
\begin{pmatrix}
1 & 2\\
-1 & 0
\end{pmatrix}
$
- $
A =
\begin{pmatrix}
1 & -1\\
2 & 0
\end{pmatrix}
\qquad
B =
\begin{pmatrix}
3 & 5\\
0 & 1
\end{pmatrix}
$
- $
A =
\begin{pmatrix}
6 & 0\\
12 & 1
\end{pmatrix}
\qquad
B =
\begin{pmatrix}
6 & 12\\
0 & 0
\end{pmatrix}
$
Obtain the Markov chain representation for a match between reactive strategies with the following vectors:
- $p=(1/2, 1/2)\qquad q=(1/2, 1/2)$
- $p=(1/4, 1/2)\qquad q=(1/2, 1/4)$
- $p=(1/3, 1/3)\qquad q=(2/3, 1/4)$
Obtain the utilities for both players for the vectors of question 3.
Assuming $p=(x, 1/2)$, find the optimal $x$ against the following players:
- $q=(1, 0)$
- $q=(1/2, 1/2)$
Interpret these results.